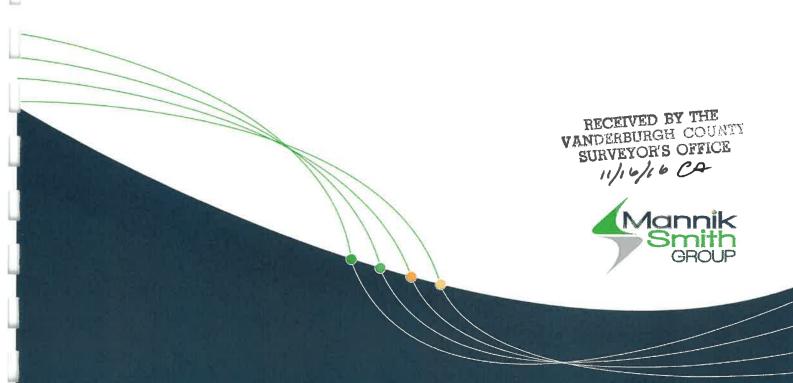
# STORM WATER MANAGEMENT SUMMARY


NOVEMBER 14, 2016

PREPARED FOR:

DAYTON FREIGHT

6450 POE AVENUE, SUITE 311

DAYTON, OHIO





11160 GREEN RIVER ROAD EVANSVILLE, INDIANA

**NOVEMBER 14, 2016** 



\*PREPARED BY: \_\_\_\_\_\_\_\_

MARK J. MATHE, PE



# **TABLE OF CONTENTS**

| SECTIO | ON:                 | PAGE NO.: |
|--------|---------------------|-----------|
| 1.0    | INTRODUCTION        | 1         |
| 2.0    | METHODOLOGY         | 1         |
| 3.0    | EXISTING CONDITIONS | 1         |
| 4.0    | PROPOSED CONDITIONS | 1         |
| 5.0    | PROJECT SUMMARY     | 2         |

# **APPENDICES**

APPENDIX A PRE AND POST CONDITIONS DRAINAGE MAPS

APPENDIX B DETENTION CALCULATIONS

APPENDIX C STORAGE VOLUMES

APPENDIX D 2005 DEVELOPMENT DETENTION CALCULATIONS REFERENCE

APPENDIX F NRCS SOILS REPORT

### 1.0 INTRODUCTION

Dayton Freight is proposing modifications to their existing site located at 11160 Green River Road, which would include the addition of a concrete pavement area and an additional gravel area. A larger pavement area and additional buildings are planned for the future which this storm design has accounted for. The project site is located in Vanderburgh County, Indiana.

# 2.0 METHODOLOGY

The Hydrological design for this project was based on controlling the sites post-developed 25 year storm event back to the outflow rate for the pre-developed 10-year storm event. Both Pre-Development and Post-Development runoff and peak discharge amounts were calculated using the rational method as described in the Stormwater Drainage Control section (chapter 13.04) of the Vanderburgh County Code.

# 3.0 EXISTING CONDITIONS

Currently, the site consists of an existing building, a parking lot area, and drive aisles located primarily in the western portion of the site with the eastern portion of the site consisting primarily of open greenspace. Drainage ditches are located on both the north and south side of the site and a stream runs along the eastern end of the site. The site is bordered by North Green River Road and commercial storage buildings to the west, a residential building and wooded area to the north, farm fields to the east, and commercial buildings and farm fields to the south.

The site hydrology primarily consists of a relatively flat area, which mostly drains into the drainage ditches to the north and south, or towards an existing pond to the east, all of which ultimately outlet into the stream located on the eastern side of the site. An existing runoff coefficient of 0.25 and 0.26, respectively, was calculated for the north and south drainage areas as shown on the calculation references sheet in the appendix.

# 3.1 Hydrologic Soil Group

According to the Custom Soil Resource Report, generated by The USDA - Natural Resources Conservation Service (NRCS) Soil Survey, the site is situated on a combination of Birds silt loam (Bd), Evansville silt loam (Ev) and Henshaw silt loam (He). Birds silt loam and Evansville silt loam both have a hydrologic soil group rating of B/D with Henshaw silt loam having a rating of C/D.

# 4.0 PROPOSED CONDITIONS

The post-developed condition of the site consists of an expansion of the concrete pavement and gravel areas with a further expansion of the pavement areas and the construction of additional buildings planned for the future. Runoff for the developed portions of the site will either be directed into detention basins located on the north or the south side of the site. Both the north and south detention basins will utilize weir walls to control release rates down to allowable values. Runoff from an existing detention basin will route through the proposed north detention basin. The weir wall for the north detention basin has been designed to account for this additional runoff and will allow it to pass through at its existing release rate. A developed runoff coefficient of 0.61 and 0.56, respectively, were calculated for the north and south drainage areas as shown on the calculation references sheet in the appendix.

## 1.0 INTRODUCTION

Dayton Freight is proposing modifications to their existing site located at 11160 Green River Road, which would include the addition of a concrete pavement area and an additional gravel area. A larger pavement area and additional buildings are planned for the future which this storm design has accounted for. The project site is located in Vanderburgh County, Indiana.

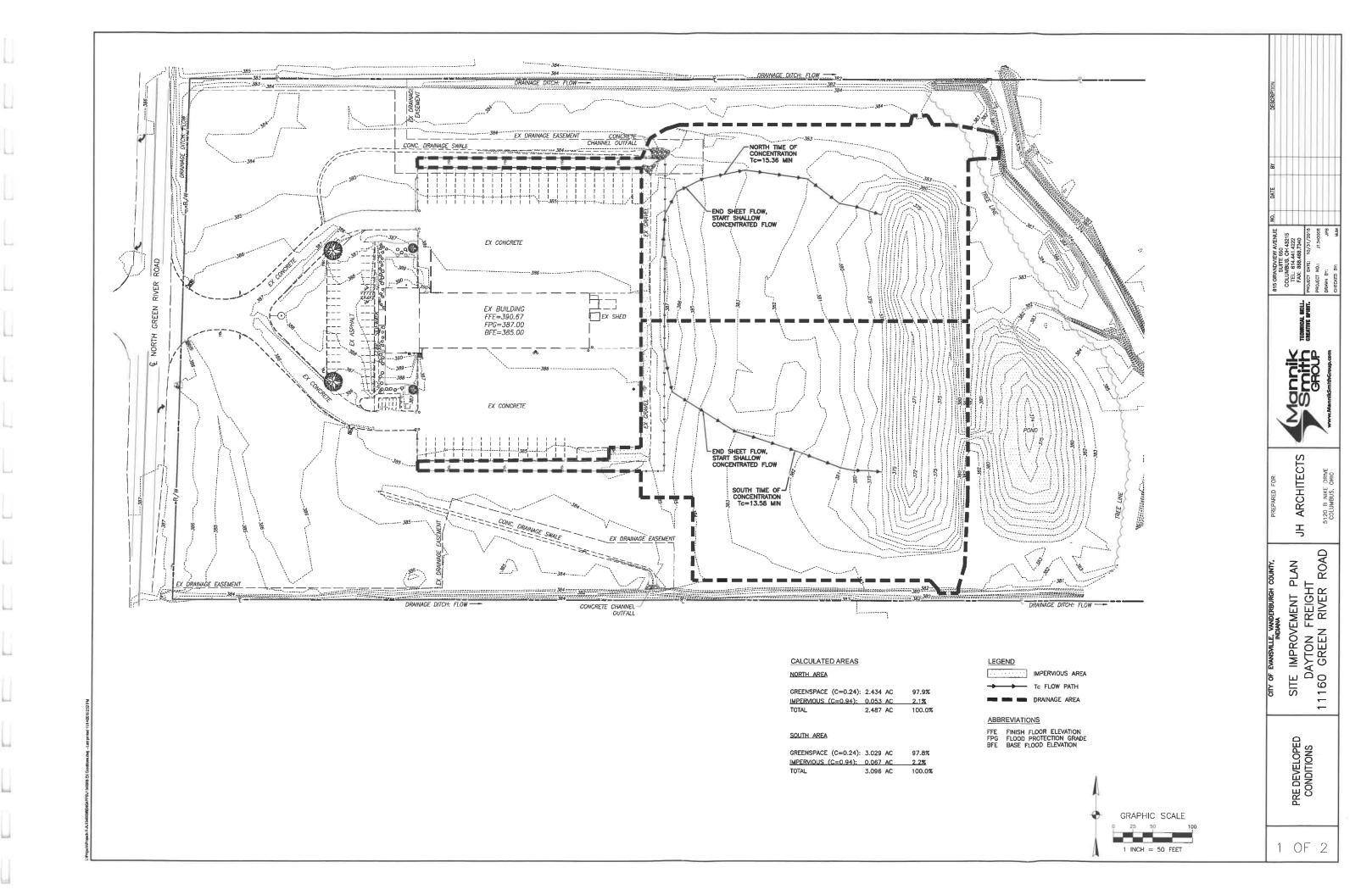
# 2.0 METHODOLOGY

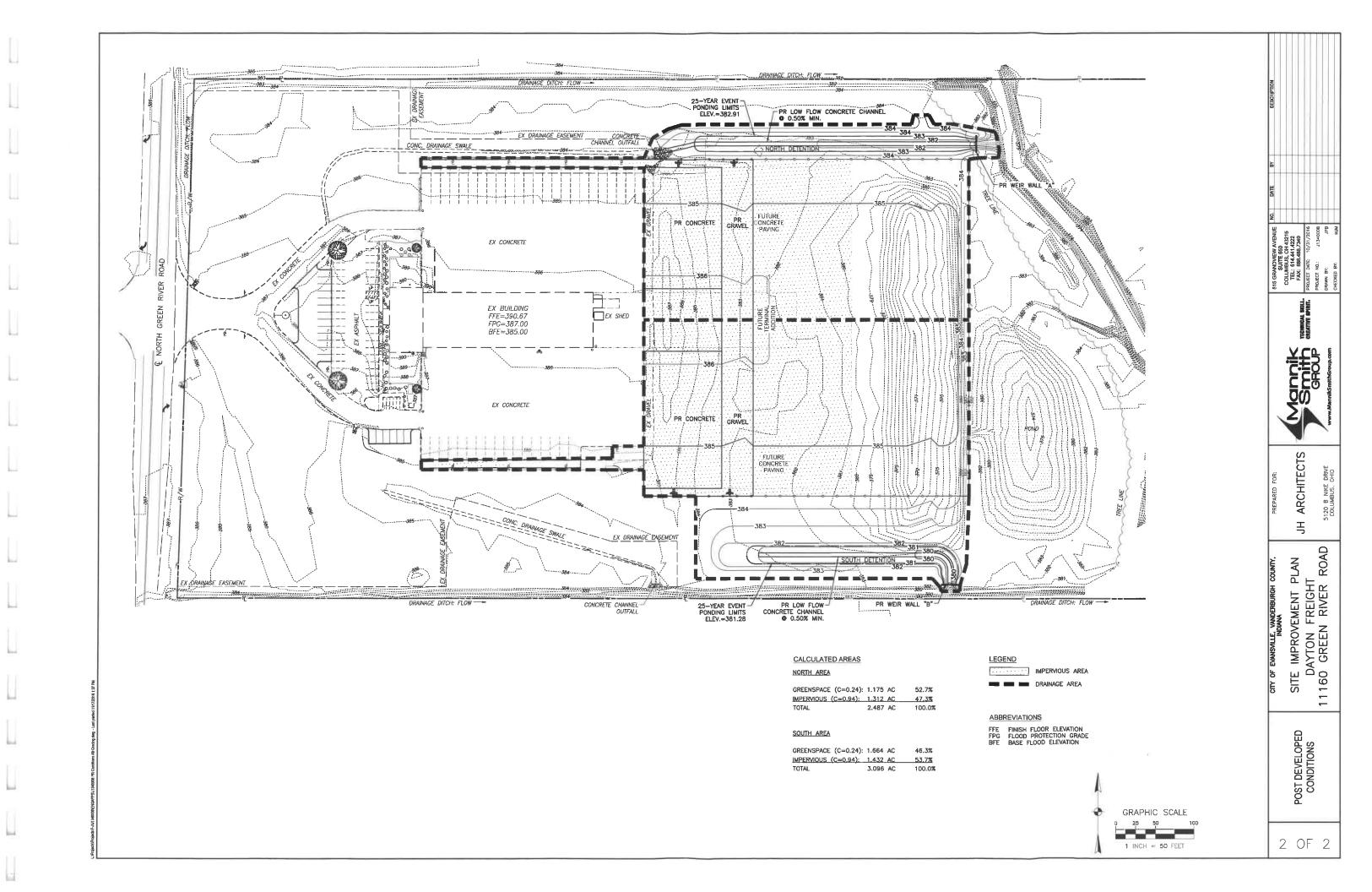
The Hydrological design for this project was based on controlling the sites post-developed 25 year storm event back to the outflow rate for the pre-developed 10-year storm event. Both Pre-Development and Post-Development runoff and peak discharge amounts were calculated using the rational method as described in the Stormwater Drainage Control section (chapter 13.04) of the Vanderburgh County Code.

### 3.0 EXISTING CONDITIONS

Currently, the site consists of an existing building, a parking lot area, and drive aisles located primarily in the western portion of the site with the eastern portion of the site consisting primarily of open greenspace. Drainage ditches are located on both the north and south side of the site and a stream runs along the eastern end of the site. The site is bordered by North Green River Road and commercial storage buildings to the west, a residential building and wooded area to the north, farm fields to the east, and commercial buildings and farm fields to the south.

The site hydrology primarily consists of a relatively flat area, which mostly drains into the drainage ditches to the north and south, or towards an existing pond to the east, all of which ultimately outlet into the stream located on the eastern side of the site. An existing runoff coefficient of 0.25 and 0.26, respectively, was calculated for the north and south drainage areas as shown on the calculation references sheet in the appendix.


# 3.1 Hydrologic Soil Group


According to the Custom Soil Resource Report, generated by The USDA - Natural Resources Conservation Service (NRCS) Soil Survey, the site is situated on a combination of Birds silt loam (Bd), Evansville silt loam (Ev) and Henshaw silt loam (He). Birds silt loam and Evansville silt loam both have a hydrologic soil group rating of B/D with Henshaw silt loam having a rating of C/D.

### 4.0 PROPOSED CONDITIONS

The post-developed condition of the site consists of an expansion of the concrete pavement and gravel areas with a further expansion of the pavement areas and the construction of additional buildings planned for the future. Runoff for the developed portions of the site will either be directed into detention basins located on the north or the south side of the site. Both the north and south detention basins will utilize weir walls to control release rates down to allowable values. Runoff from an existing detention basin will route through the proposed north detention basin. The weir wall for the north detention basin has been designed to account for this additional runoff and will allow it to pass through at its existing release rate. A developed runoff coefficient of 0.61 and 0.56, respectively, were calculated for the north and south drainage areas as shown on the calculation references sheet in the appendix.

# **APPENDIX A** PRE AND POST CONDITIONS DRAINAGE MAPS





APPENDIX B
DETENTION CALCULATIONS





Project Number: J1340008

11601 N. Green River Road, Evansville, IN North Drainage Area - Calculation References

Allowable Discharge,  $Q_a = C * i_{10} *A = 0.25 * 4.48 in/hr * 2.487 AC = 2.84 cfs$  Allowable Discharge,  $Q_a = C_{ex} * i_{10-Tc} * A$ 

C = Runoff coefficient dictated by Vanderburgh County

A(AC) = Tributary area

 $i_{10\text{-Tc}}$  (in/hr) = Rainfall intensity of a 10 year storm at time Tc

Allowable Discharge,  $Q_a$  (cfs) = 2.84

A(AC) = 2.487

Time of Concentration,  $T_c$  (min) = 15.36

 $i_{10-Tc}$  (in/hr) = 4.48

Existing Runoff Coefficient,  $C_{ex} = 0.25$ 

'roposed Runoff Coefficient,  $C_{pr} = 0.61$ 

| C, Runoff Coefficients |      |  |
|------------------------|------|--|
| Pavement, Roofs, etc.  | 0.94 |  |
| Open Space             | 0.24 |  |

| Proposed Conditions  |       |  |
|----------------------|-------|--|
| Impervious Area (AC) | 1.312 |  |
| Pervious Area (AC)   | 1.175 |  |

| Existing Conditions  |       |  |
|----------------------|-------|--|
| Impervious Area (AC) | 0.053 |  |
| Pervious Area (AC)   | 2.434 |  |

# Jtilized Equations

$$Q_{\text{in-25(t)}} (\text{cfs}) = C_p * i_{(t)} * A$$

 $Q_{in-25(t)}$  (cfs) = Proposed 25-Year inflow rate at time (t)

 $C_p = PR$  conditions runoff coefficient

 $i_{(t)}$  (in/hr) = Rainfall intensity at time (t)

A (AC) = Drainage area

$$V_{rs}(ft^3) = (Q_{in-25(t)} - Q_a)*(T_d*60)$$

 $V_{rs}$  (ft<sup>3</sup>) = Required storage volume

 $Q_{\text{in-25(t)}}$  (cfs) = Proposed 25-Year inflow rate at time (t)

 $Q_a$  (cfs) = Allowable discharge

 $T_d$  (min) = Strom duration

Project Number: J1340008

11601 N. Green River Road, Evansville, IN

**Time of Concentration Calculation** 

# Sheet Flow

Manning's roughness coefficient, n = 0.24

Flow length, L (ft) = 100

2-year 24-hour rainfall,  $P_2$  (in) = 3.25

Land Slope, s (ft/ft) = 0.0229

Sheet Flow,  $T_t$  (min) = 13.41

# Shallow Concentrated Flow

| Segment | 1st | 2nd |
|---------|-----|-----|
|---------|-----|-----|

Flow length, L(ft) = 210 55

Land Slope, s (ft/ft) = 0.016 0.055

Average velocity, V (ft/s)= 2.055 3.768

nallow Concentrated Time,  $T_s$  (min) = 1.70 0.24

Time of concentration,  $T_c$  (min) = 15.36

# **Utilized Equations**

Unpaved, 
$$V = 16.1345*(s)^{0.5}$$

Paved, 
$$V = 20.3282*(s)^{0.5}$$

$$T_{t}(hr) = \frac{0.007*(n*L)^{0.8}}{P_{2}^{0.5}*s^{0.4}}$$

$$T_s(hr) = L/(3600*V)$$

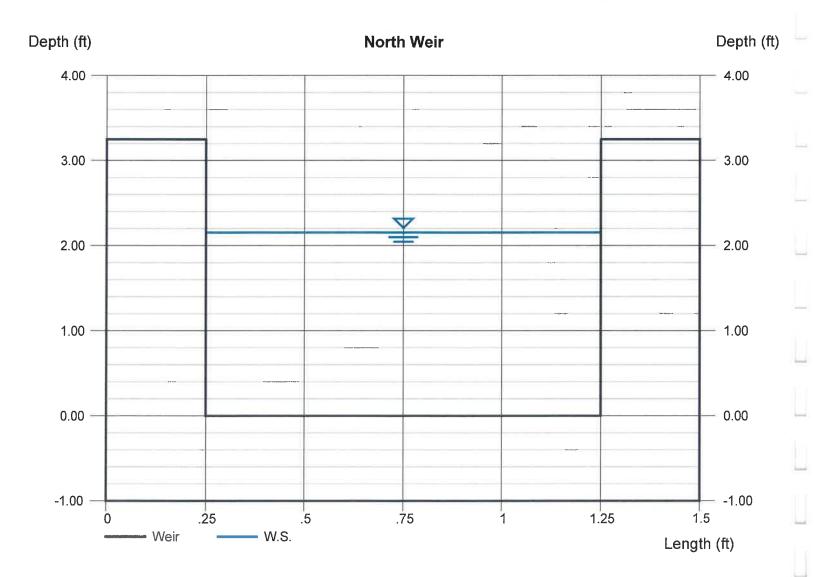
Project Number: J1340008

11601 N. Green River Road, Evansville, IN North Drainage Area - Detention Calculations

Allowable Discharge,  $Q_a = C_{ex} * i_{10-Tc} * A$ 

| Drainage Area, A (AC) =                                     | 2.487 |
|-------------------------------------------------------------|-------|
| Proposed Runoff Coefficient, $C_{pr}$ =                     | 0.61  |
| $C_{pr}^*A(AC) =$                                           | 1.52  |
| Existing Tc (min) =                                         | 15.36 |
| Proposed Tc (min) =                                         | 10.00 |
| 10 YR Rainfall Intentsity at time Tc, $i_{10-Tc}$ (in/hr) = | 4.48  |
| Existing Runoff Coefficient, $C_{ex}$ =                     | 0.25  |
| Allowable Discharge, $Q_a$ (CFS) =                          | 2.84  |

| T <sub>d</sub> , Storm | i <sub>25-(t)</sub> , Rainfall | Q <sub>in-25</sub> , | 0 0                                 | V <sub>rs</sub> , Storage   |
|------------------------|--------------------------------|----------------------|-------------------------------------|-----------------------------|
| Duration               | Intensity                      | Inflow               | $Q_{\text{in-25}}$ - $Q_{\text{a}}$ | Volume                      |
| (min)                  | (in/hr)                        | Rate (cfs)           |                                     | Required (ft <sup>3</sup> ) |
| 5                      | 7.208                          | 10.92                | 8.08                                | 2,424.11                    |
| 10                     | 5.925                          | 8.98                 | 6.14                                | 3,681.88                    |
| 15                     | 5.033                          | 7.63                 | 4.78                                | 4,306.50                    |
| 20                     | 4.571                          | 6.93                 | 4.08                                | 4,901.41                    |
| 30                     | 3.646                          | 5.52                 | 2.68                                | 4,830.37                    |
| 40                     | 3.123                          | 4.73                 | 1.89                                | 4,539.95                    |
| 50                     | 2.601                          | 3.94                 | 1.10                                | 3,299.25                    |
| 60                     | 2.078                          | 3.15                 | 0.31                                | 1,108.27                    |
| 70                     | 1.965                          | 2.98                 | 0.14                                | 573.91                      |
| 80                     | 1.852                          | 2.81                 | 0.00                                | 0.00                        |
| 90                     | 1.739                          | 2.63                 | 0.00                                | 0.00                        |
| 100                    | 1.626                          | 2.46                 | 0.00                                | 0.00                        |
| 110                    | 1.513                          | 2.29                 | 0.00                                | 0.00                        |
| 120                    | 1.400                          | 2.12                 | 0.00                                | 0.00                        |
| 130                    | 1.337                          | 2.02                 | 0.00                                | 0.00                        |
| 140                    | 1.273                          | 1.93                 | 0.00                                | 0.00                        |
| 150                    | 1.210                          | 1.83                 | 0.00                                | 0.00                        |
| 160                    | 1.146                          | 1.74                 | 0.00                                | 0.00                        |
| 170                    | 1.083                          | 1.64                 | 0.00                                | 0.00                        |
| 180                    | 1.019                          | 1.54                 | 0.00                                | 0.00                        |
|                        |                                |                      |                                     |                             |


# Weir Report

Hydraflow Express Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc.

Monday, Nov 14 2016

# **North Weir**

| Rectangular Weir   |         | Highlighted     |         |
|--------------------|---------|-----------------|---------|
| Crest              | = Sharp | Depth (ft)      | = 2.15  |
| Bottom Length (ft) | = 1.00  | Q (cfs)         | = 10.51 |
| Total Depth (ft)   | = 3.25  | Area (sqft)     | = 2.15  |
|                    |         | Velocity (ft/s) | = 4.88  |
| Calculations       |         | Top Width (ft)  | = 1.00  |
| Weir Coeff. Cw     | = 3.33  |                 |         |
| Compute by:        | Known Q |                 |         |
| Known Q (cfs)      | = 10.51 |                 |         |



Project Number: J1340008

11601 N. Green River Road, Evansville, IN South Drainage Area - Calculation References

Allowable Discharge, 
$$Q_a = C * i_{10} *A = 0.26 * 4.76 in/hr * 3.096 AC = 3.76 cfs$$
  
Allowable Discharge,  $Q_a = C_{ex} * i_{10-Te} *A$ 

C = Runoff coefficient dictated by Vanderburgh County

A(AC) = Tributary area

 $i_{10-Tc}$  (in/hr) = Rainfall intensity of a 10 year storm at time Tc

Allowable Discharge,  $Q_a$  (cfs) = 3.76

A(AC) = 3.096

Time of Concentration,  $T_c$  (min) = 13.58

 $i_{10-Tc}$  (in/hr) = 4.76

Existing Runoff Coefficient,  $C_{ex} = 0.26$ 

'roposed Runoff Coefficient,  $C_{pr} = 0.56$ 

| C, Runoff Coefficients |      |  |
|------------------------|------|--|
| Pavement, Roofs, etc.  | 0.94 |  |
| Open Space             | 0.24 |  |

| Proposed Conditions  |       |  |
|----------------------|-------|--|
| Impervious Area (AC) | 1.432 |  |
| Pervious Area (AC)   | 1.664 |  |

| Existing Conditions  |       |  |
|----------------------|-------|--|
| Impervious Area (AC) | 0.067 |  |
| Pervious Area (AC)   | 3.029 |  |

# Jtilized Equations

$$Q_{\text{in-25(t)}} (\text{cfs}) = C_p * i_{(t)} * A$$

$$Q_{\text{in-25(t)}}$$
 (cfs) = Proposed 25-Year inflow rate at time (t)

 $C_p = PR$  conditions runoff coefficient

 $i_{(t)}$  (in/hr) = Rainfall intensity at time (t)

A(AC) = Drainage area

$$V_{rs}(ft^3) = (Q_{in-25(t)} - Q_a)*(T_d*60)$$

$$V_{rs}(ft^3)$$
 = Required storage volume

$$Q_{in-25(t)}$$
 (cfs) = Proposed 25-Year inflow rate at time (t)

 $Q_a$  (cfs) = Allowable discharge

 $T_d$  (min) = Strom duration

Project Number: J1340008

11601 N. Green River Road, Evansville, IN

**Time of Concentration Calculation** 

# Sheet Flow

Manning's roughness coefficient, n = 0.24

Flow length, L(ft) = 100

2-year 24-hour rainfall,  $P_2$  (in) = 3.25

Land Slope, s(ft/ft) = 0.0317

Sheet Flow,  $T_t$  (min) = 11.77

# Shallow Concentrated Flow

| Segment                                 | 1st   | 2nd   |
|-----------------------------------------|-------|-------|
| Flow length, $L(ft) =$                  | 190   | 53    |
| Land Slope, s (ft/ft) =                 | 0.015 | 0.057 |
| Average velocity, V (ft/s)=             | 2.000 | 3.839 |
| nallow Concentrated Time, $T_s$ (min) = | 1.58  | 0.23  |

Time of concentration,  $T_c$  (min) = 13.58

# **Utilized Equations**

Unpaved, 
$$V = 16.1345*(s)^{0.5}$$
  
Paved,  $V = 20.3282*(s)^{0.5}$ 

$$T_{t}(hr) = \frac{0.007*(n*L)^{0.8}}{P_{2}^{0.5}*s^{0.4}}$$

$$T_s(hr) = L/(3600*V)$$

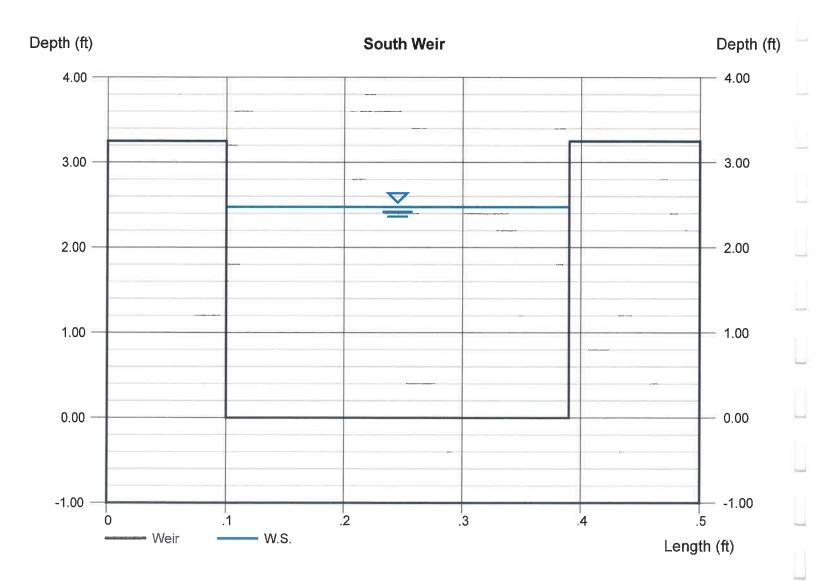
Project Number: J1340008

11601 N. Green River Road, Evansville, IN South Drainage Area - Detention Calculations

Allowable Discharge,  $Q_a = C_{ex}*i_{10-Tc}*A$ 

| Drainage Area, A (AC) =                                     | 3.096 |
|-------------------------------------------------------------|-------|
| Proposed Runoff Coefficient, C <sub>pr</sub> =              | 0.56  |
| $C_{pr}*A(AC) =$                                            | 1.75  |
| Existing Tc (min) =                                         | 13.58 |
| Proposed Tc (min) =                                         | 10.00 |
| 10 YR Rainfall Intentsity at time Tc, $i_{10-Tc}$ (in/hr) = | 4.76  |
| Existing Runoff Coefficient, C <sub>ex</sub> =              | 0.26  |
| Allowable Discharge, Qa (CFS) =                             | 3.76  |
|                                                             |       |

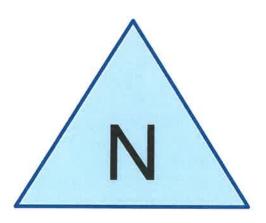
| T <sub>d</sub> , Storm<br>Duration | i <sub>25-(t)</sub> , Rainfall<br>Intensity | Q <sub>in-25</sub> ,<br>Inflow | Q <sub>in-25</sub> - Q <sub>a</sub> | V <sub>rs</sub> , Storage<br>Volume |
|------------------------------------|---------------------------------------------|--------------------------------|-------------------------------------|-------------------------------------|
| (min)                              | (in/hr)                                     | Rate (cfs)                     |                                     | Required (ft <sup>3</sup> )         |
| 5                                  | 7.208                                       | 12.58                          | 8.82                                | 2,646.17                            |
| 10                                 | 5.925                                       | 10.34                          | 6.58                                | 3,948.75                            |
| 15                                 | 5.033                                       | 8.78                           | 5.02                                | 4,521.93                            |
| 20                                 | 4.571                                       | 7.98                           | 4.22                                | 5,060.91                            |
| 30                                 | 3.646                                       | 6.36                           | 2.60                                | 4,686.35                            |
| 40                                 | 3.123                                       | 5.45                           | 1.69                                | 4,059.07                            |
| 50                                 | 2.601                                       | 4.54                           | 0.78                                | 2,337.09                            |
| 60                                 | 2.078                                       | 3.63                           | 0.00                                | 0.00                                |
| 70                                 | 1.965                                       | 3.43                           | 0.00                                | 0.00                                |
| 80                                 | 1.852                                       | 3.23                           | 0.00                                | 0.00                                |
| 90                                 | 1.739                                       | 3.04                           | 0.00                                | 0.00                                |
| 100                                | 1.626                                       | 2.84                           | 0.00                                | 0.00                                |
| 110                                | 1.513                                       | 2.64                           | 0.00                                | 0.00                                |
| 120                                | 1.400                                       | 2.44                           | 0.00                                | 0.00                                |
| 130                                | 1.337                                       | 2.33                           | 0.00                                | 0.00                                |
| 140                                | 1.273                                       | 2,22                           | 0.00                                | 0.00                                |
| 150                                | 1.210                                       | 2.11                           | 0.00                                | 0.00                                |
| 160                                | 1.146                                       | 2.00                           | 0.00                                | 0.00                                |
| 170                                | 1.083                                       | 1.89                           | 0.00                                | 0.00                                |
| 180                                | 1.019                                       | 1.78                           | 0.00                                | 0.00                                |
|                                    |                                             |                                |                                     |                                     |


# Weir Report

Hydraflow Express Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc.

Monday, Nov 14 2016

# **South Weir**


| Rectangular Weir   |         | Highlighted     |         |
|--------------------|---------|-----------------|---------|
| Crest              | = Sharp | Depth (ft)      | = 2.48  |
| Bottom Length (ft) | = 0.29  | Q (cfs)         | = 3.760 |
| Total Depth (ft)   | = 3.25  | Area (sqft)     | = 0.72  |
|                    |         | Velocity (ft/s) | = 5.24  |
| Calculations       |         | Top Width (ft)  | = 0.29  |
| Weir Coeff. Cw     | = 3.33  |                 |         |
| Compute by:        | Known Q |                 |         |
| Known Q (cfs)      | = 3.76  |                 |         |



APPENDIX C STORAGE VOLUMES







# North Basin









Routing Diagram for J1340008 - Detention Time
Prepared by The Mannik & Smith Group, Printed 11/14/2016
HydroCAD® 10.00-11 s/n 08386 © 2014 HydroCAD Software Solutions LLC

# J1340008 - Detention Time

Type II 24-hr 10-Year Rainfall=4.70"

Prepared by The Mannik & Smith Group

Printed 11/14/2016

HydroCAD® 10.00-11 s/n 08386 © 2014 HydroCAD Software Solutions LLC

Page 2

# **Summary for Pond N: North Basin**

0.00 hrs, Volume= 0.00 hrs, Volume= Inflow 0.00 cfs @ 0.000 af

10.40 cfs @ 0.136 af, Atten= 0%, Lag= 0.0 min Outflow =

Primary 10.40 cfs @ 0.00 hrs, Volume= 0.136 af

Routing by Stor-Ind method, Time Span= 0.00-2.00 hrs, dt= 0.05 hrs

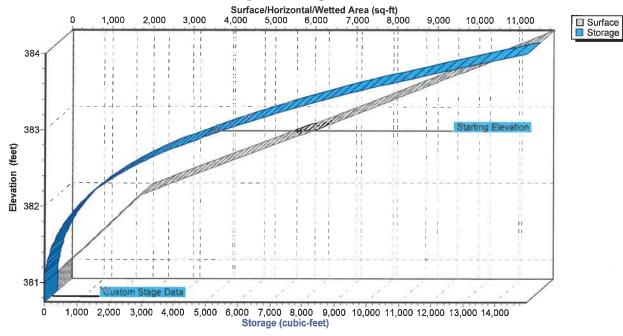
Starting Elev= 382.91' Surf.Area= 6,600 sf Storage= 4,921 cf

Peak Elev= 382.91' @ 0.00 hrs Surf.Area= 6,600 sf Storage= 4,921 cf

Plug-Flow detention time= (not calculated: no plugs found)

Center-of-Mass det. time= (not calculated: no inflow)

| Volume        | Inv     | vert Ava  | il.Storage       | Storage   | Description      |                                |
|---------------|---------|-----------|------------------|-----------|------------------|--------------------------------|
| #1            | 380     | .75'      | 14,984 cf        | Custon    | Stage Data (Pi   | rismatic)Listed below (Recalc) |
| []4:          |         | 0         | 1                | 01        | 0                |                                |
| Elevation     | on      | Surf.Area | inc              | :Store    | Cum.Store        |                                |
| (fee          | et)     | (sq-ft)   | (cubi            | c-feet)   | (cubic-feet)     |                                |
| 380.7         | 75      | 4         |                  | 0         | 0                |                                |
| 381.0         | 00      | 8         |                  | 2         | 2                |                                |
| 382.0         | 00      | 2,002     |                  | 1,005     | 1,007            |                                |
| 383.0         | 00      | 7,055     |                  | 4,529     | 5,535            |                                |
| 384.0         | 00      | 11,843    |                  | 9,449     | 14,984           |                                |
|               |         |           |                  |           |                  |                                |
| <u>Device</u> | Routing | lr lr     | vert Outl        | et Device | S                |                                |
| #1            | Primary | 380       | 0.75' <b>Cus</b> | tom Weii  | /Orifice, Cv= 2. | .62 (C= 3.28)                  |
|               | •       |           |                  |           | ).00 3.25        | ,                              |
|               |         |           | Widt             | h (feet)  | 1.00 1.00        |                                |


Primary OutFlow Max=10.40 cfs @ 0.00 hrs HW=382.91' (Free Discharge) 1=Custom Weir/Orifice (Weir Controls 10.40 cfs @ 4.81 fps)

Printed 11/14/2016

Page 3

# Pond N: North Basin

# Stage-Area-Storage



Printed 11/14/2016

Page 4

# Hydrograph for Pond N: North Basin

| Time<br>(hours) | Inflow<br>(cfs) | Storage<br>(cubic-feet) | Elevation (feet) | Primary<br>(cfs) |
|-----------------|-----------------|-------------------------|------------------|------------------|
| 0.00            | 0.00            | 4,921                   | 382.91           | 10.40            |
| 0.05            | 0.00            | 3,230                   | 382.62           | 8.39             |
| 0.10            | 0.00            | 1,897                   | 382.32           | 6.43             |
| 0.15            | 0.00            | 926                     | 381.96           | 4.35             |
| 0.20            | 0.00            | 319                     | 381.56           | 2.39             |
| 0.25            | 0.00            | 28                      | 381.16           | 0.85             |
| 0.30            | 0.00            | 0                       | 380.75           | 0.00             |
| 0.35            | 0.00            | 0                       | 380.75           | 0.00             |
| 0.40            | 0.00            | 0                       | 380.75           | 0.00             |
| 0.45            | 0.00            | 0                       | 380.75           | 0.00             |
| 0.50<br>0.55    | 0.00            | 0                       | 380.75           | 0.00             |
| 0.60            | 0.00<br>0.00    | 0                       | 380.75<br>380.75 | 0.00             |
| 0.65            | 0.00            | 0                       | 380.75           | 0.00<br>0.00     |
| 0.70            | 0.00            | 0                       | 380.75           | 0.00             |
| 0.75            | 0.00            | 0                       | 380.75           | 0.00             |
| 0.80            | 0.00            | 0                       | 380.75           | 0.00             |
| 0.85            | 0.00            | ŏ                       | 380.75           | 0.00             |
| 0.90            | 0.00            | Ō                       | 380.75           | 0.00             |
| 0.95            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.00            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.05            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.10            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.15            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.20            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.25            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.30            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.35            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.40<br>1.45    | 0.00            | 0                       | 380.75           | 0.00             |
| 1.45            | 0.00<br>0.00    | 0<br>0                  | 380.75<br>380.75 | 0.00<br>0.00     |
| 1.55            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.60            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.65            | 0.00            | ő                       | 380.75           | 0.00             |
| 1.70            | 0.00            | ő                       | 380.75           | 0.00             |
| 1.75            | 0.00            | Ö                       | 380.75           | 0.00             |
| 1.80            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.85            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.90            | 0.00            | 0                       | 380.75           | 0.00             |
| 1.95            | 0.00            | 0                       | 380.75           | 0.00             |
| 2.00            | 0.00            | 0                       | 380.75           | 0.00             |

Printed 11/14/2016

Page 5

# Stage-Area-Storage for Pond N: North Basin

| Elevation<br>(feet) | Surface<br>(sq-ft) | Storage<br>(cubic-feet) | Elevation (feet) | Surface<br>(sq-ft) | Storage<br>(cubic-feet) |
|---------------------|--------------------|-------------------------|------------------|--------------------|-------------------------|
|                     |                    |                         |                  |                    |                         |
| 380.75              | 4                  | 0                       | 381.28           | 566                | 82                      |
| 380.76              | 4                  | 0                       | 381.29           | 586                | 88                      |
| 380.77              | 4                  | 0                       | 381.30           | 606                | 94                      |
| 380.78              | 4                  | 0                       | 381.31           | 626                | 100                     |
| 380.79              | 5                  | 0                       | 381.32           | 646                | 106                     |
| 380.80              | 5<br>5<br>5        | 0                       | 381.33           | 666                | 113                     |
| 380.81              | 5                  | 0                       | 381.34           | 686                | 119                     |
| 380.82              | 5                  | 0                       | 381.35           | 706                | 126                     |
| 380.83              | 5                  | 0                       | 381.36           | 726                | 134                     |
| 380.84              | 5                  | Ö                       | 381.37           | 746                | 141                     |
| 380.85              | 6                  | ŏ                       | 381.38           | 766                | 149                     |
| 380.86              | 6                  | 1                       | 381.39           | 786                | 156                     |
| 380.87              | 6                  | 1                       | 381.40           | 806                | 164                     |
| 380.88              | 6                  | i                       | 381.41           | 826                | 172                     |
| 380.89              | 6                  | 1                       | 381.42           | 845                | 181                     |
| 380.90              | 6                  | 1                       |                  |                    |                         |
|                     | 7                  |                         | 381.43           | 865                | 189                     |
| 380.91              |                    | 1                       | 381.44           | 885                | 198                     |
| 380.92              | 7                  | 1                       | 381.45           | 905                | 207                     |
| 380.93              | 7                  | 1                       | 381.46           | 925                | 216                     |
| 380.94              | 7                  | 1                       | 381.47           | 945                | 225                     |
| 380.95              | 7                  | 1                       | 381.48           | 965                | 235                     |
| 380.96              | 7                  | 1                       | 381.49           | 985                | 245                     |
| 380.97              | 8                  | 1                       | 381.50           | 1,005              | 255                     |
| 380.98              | 8                  | 1                       | 381.51           | 1,025              | 265                     |
| 380.99              | 8                  | 1                       | 381.52           | 1,045              | 275                     |
| 381.00              | 8                  | 2                       | 381.53           | 1,065              | 286                     |
| 381.01              | 28                 | 2                       | 381.54           | 1,085              | 297                     |
| 381.02              | 48                 | 2                       | 381.55           | 1,105              | 307                     |
| 381.03              | 68                 | 3                       | 381.56           | 1,125              | 319                     |
| 381.04              | 88                 | 3                       | 381.57           | 1,145              | 330                     |
| 381.05              | 108                | 4                       | 381.58           | 1,165              | 342                     |
| 381.06              | 128                | 6                       | 381.59           | 1,184              | 353                     |
| 381.07              | 148                | 7                       | 381.60           | 1,204              | 365                     |
| 381.08              | 168                | 9                       | 381.61           | 1,224              | 377                     |
| 381.09              | 187                | 10                      | 381.62           | 1,244              | 390                     |
| 381.10              | 207                | 12                      | 381.63           | 1,264              | 402                     |
| 381.11              | 227                | 14                      | 381.64           | 1,284              | 415                     |
| 381.12              | 247                | 17                      | 381.65           | 1,304              | 428                     |
| 381.13              | 267                | 19                      | 381.66           | 1,324              | 441                     |
| 381.14              | 287                | 22                      | 381.67           | 1,344              | 454                     |
| 381.15              | 307                | 25                      | 381.68           | 1,364              | 468                     |
| 381.16              | 327                | 28                      | 381.69           |                    | 482                     |
| 381.17              | 347                | 32                      | 381.70           | 1,384<br>1,404     | 496                     |
| 381.18              | 367                | 35                      | 381.71           | 1,424              | 510                     |
| 381.19              | 387                |                         |                  |                    |                         |
|                     |                    | 39                      | 381.72           | 1,444              | 524<br>520              |
| 381.20              | 407<br>427         | 43                      | 381.73           | 1,464              | 539<br>553              |
| 381.21              | 427                | 47<br>52                | 381.74           | 1,484              | 553<br>568              |
| 381.22              | 447                | 52<br>56                | 381.75           | 1,504              | 568                     |
| 381.23              | 467                | 56                      | 381.76           | 1,523              | 583                     |
| 381.24              | 487                | 61                      | 381.77           | 1,543              | 599                     |
| 381.25              | 507                | 66                      | 381.78           | 1,563              | 614                     |
| 381.26              | 526                | 71                      | 381.79           | 1,583              | 630                     |
| 381.27              | 546                | 76                      | 381.80           | 1,603              | 646                     |

Printed 11/14/2016

Page 6

# Stage-Area-Storage for Pond N: North Basin (continued)

| Elevation        | Surface        | Storage        | Elevation        | Surface        | Storage        |
|------------------|----------------|----------------|------------------|----------------|----------------|
| (feet)           | (sq-ft)        | (cubic-feet)   | (feet)           | (sq-ft)        | (cubic-feet)   |
| 381.81           | 1,623          | 662            | 382.34           | 3,720          | 1,979          |
| 381.82           | 1,643          | 678            | 382.35           | 3,771          | 2,017          |
| 381.83           | 1,663          | 695            | 382.36           | 3,821          | 2,055          |
| 381.84           | 1,683          | 712            | 382.37           | 3,872          | 2,093          |
| 381.85           | 1,703          | 729            | 382.38           | 3,922          | 2,132          |
| 381.86           | 1,723          | 746            | 382.39           | 3,973          | 2,172          |
| 381.87           | 1,743          | 763            | 382.40           | 4,023          | 2,212          |
| 381.88           | 1,763          | 781            | 382.41           | 4,074          | 2,252          |
| 381.89           | 1,783          | 798            | 382.42           | 4,124          | 2,293          |
| 381.90           | 1,803          | 816            | 382.43           | 4,175          | 2,335          |
| 381.91           | 1,823          | 834            | 382.44           | 4,225          | 2,377          |
| 381.92           | 1,842          | 853            | 382.45           | 4,276          | 2,419          |
| 381.93           | 1,862          | 871            | 382.46           | 4,326          | 2,462          |
| 381.94           | 1,882          | 890            | 382.47           | 4,377          | 2,506          |
| 381.95           | 1,902          | 909            | 382.48           | 4,427          | 2,550          |
| 381.96           | 1,922          | 928            | 382.49           | 4,478          | 2,594          |
| 381.97<br>381.98 | 1,942          | 947            | 382.50           | 4,529          | 2,639          |
|                  | 1,962          | 967            | 382.51           | 4,579          | 2,685          |
| 381.99<br>382.00 | 1,982<br>2,002 | 987            | 382.52           | 4,630          | 2,731          |
| 382.01           | 2,053          | 1,007          | 382.53           | 4,680          | 2,777          |
| 382.02           | 2,003<br>2,103 | 1,027<br>1,048 | 382.54           | 4,731          | 2,824          |
| 382.03           | 2,103          | 1,048          | 382.55           | 4,781          | 2,872          |
| 382.04           | 2,104          | 1,009          | 382.56<br>382.57 | 4,832          | 2,920          |
| 382.05           | 2,255          | 1,113          | 382.58           | 4,882<br>4,933 | 2,968          |
| 382.06           | 2,305          | 1,113          | 382.59           |                | 3,018          |
| 382.07           | 2,356          | 1,159          | 382.60           | 4,983<br>5,034 | 3,067          |
| 382.08           | 2,406          | 1,183          | 382.61           | 5,034<br>5,084 | 3,117<br>3,168 |
| 382.09           | 2,457          | 1,207          | 382.62           | 5,135          | 3,108          |
| 382.10           | 2,507          | 1,232          | 382.63           | 5,185          | 3,271          |
| 382.11           | 2,558          | 1,257          | 382.64           | 5,236          | 3,323          |
| 382.12           | 2,608          | 1,283          | 382.65           | 5,286          | 3,375          |
| 382.13           | 2,659          | 1,309          | 382.66           | 5,337          | 3,428          |
| 382.14           | 2,709          | 1,336          | 382.67           | 5,388          | 3,482          |
| 382.15           | 2,760          | 1,364          | 382.68           | 5,438          | 3,536          |
| 382.16           | 2,810          | 1,391          | 382.69           | 5,489          | 3,591          |
| 382.17           | 2,861          | 1,420          | 382.70           | 5,539          | 3,646          |
| 382.18           | 2,912          | 1,449          | 382.71           | 5,590          | 3,702          |
| 382.19           | 2,962          | 1,478          | 382.72           | 5,640          | 3,758          |
| 382.20           | 3,013          | 1,508          | 382.73           | 5,691          | 3,814          |
| 382.21           | 3,063          | 1,538          | 382.74           | 5,741          | 3,871          |
| 382.22           | 3,114          | 1,569          | 382.75           | 5,792          | 3,929          |
| 382.23           | 3,164          | 1,601          | 382.76           | 5,842          | 3,987          |
| 382.24           | 3,215          | 1,633          | 382.77           | 5,893          | 4,046          |
| 382.25           | 3,265          | 1,665          | 382.78           | 5,943          | 4,105          |
| 382.26           | 3,316          | 1,698          | 382.79           | 5,994          | 4,165          |
| 382.27           | 3,366          | 1,731          | 382.80           | 6,044          | 4,225          |
| 382.28           | 3,417          | 1,765          | 382.81           | 6,095          | 4,286          |
| 382.29           | 3,467          | 1,800          | 382.82           | 6,145          | 4,347          |
| 382.30           | 3,518          | 1,834          | 382.83           | 6,196          | 4,409          |
| 382.31           | 3,568          | 1,870          | 382.84           | 6,247          | 4,471          |
| 382.32           | 3,619          | 1,906          | 382.85           | 6,297          | 4,534          |
| 382.33           | 3,669          | 1,942          | 382.86           | 6,348          | 4,597          |
|                  |                |                |                  |                |                |

Printed 11/14/2016

Page 7

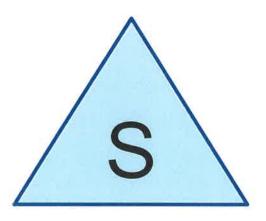
# Stage-Area-Storage for Pond N: North Basin (continued)

| Elevation        | Surface        | Storage        | Elevation        | Surface          | Storage          |
|------------------|----------------|----------------|------------------|------------------|------------------|
| (feet)           | (sq-ft)        | (cubic-feet)   | (feet)           | (sq-ft)          | (cubic-feet)     |
| 382.87           | 6,398          | 4,661          | 383.40           | 8,970            | 8,740            |
| 382.88           | 6,449          | 4,725          | 383.41           | 9,018            | 8,830            |
| 382.89           | 6,499          | 4,790          | 383.42           | 9,066            | 8,920            |
| 382.90           | 6,550          | 4,855          | 383.43           | 9,114            | 9,011            |
| 382.91           | 6,600          | 4,921          | 383.44           | 9,162            | 9,103            |
| 382.92           | 6,651          | 4,987          | 383.45           | 9,210            | 9,195            |
| 382.93           | 6,701          | 5,054          | 383.46           | 9,257            | 9,287            |
| 382.94           | 6,752          | 5,121          | 383.47           | 9,305            | 9,380            |
| 382.95           | 6,802          | 5,189          | 383.48           | 9,353            | 9,473            |
| 382.96           | 6,853          | 5,257          | 383.49           | 9,401            | 9,567            |
| 382.97           | 6,903          | 5,326          | 383.50           | 9,449            | 9,661            |
| 382.98           | 6,954          | 5,395          | 383.51           | 9,497            | 9,756            |
| 382.99           | 7,004          | 5,465          | 383.52           | 9,545            | 9,851            |
| 383.00           | 7,055          | 5,535          | 383.53           | 9,593            | 9,947            |
| 383.01           | 7,103          | 5,606          | 383.54           | 9,641            | 10,043           |
| 383.02           | 7,151          | 5,677          | 383.55           | 9,688            | 10,139           |
| 383.03           | 7,199          | 5,749          | 383.56           | 9,736            | 10,237           |
| 383.04           | 7,247          | 5,821          | 383.57           | 9,784            | 10,334           |
| 383.05           | 7,294          | 5,894          | 383.58           | 9,832            | 10,432           |
| 383.06           | 7,342          | 5,967          | 383.59           | 9,880            | 10,531           |
| 383.07           | 7,390          | 6,041          | 383.60           | 9,928            | 10,630           |
| 383.08           | 7,438          | 6,115          | 383.61           | 9,976            | 10,729           |
| 383.09           | 7,486          | 6,189          | 383.62           | 10,024           | 10,829           |
| 383.10           | 7,534          | 6,264          | 383.63           | 10,071           | 10,930           |
| 383.11           | 7,582          | 6,340          | 383.64           | 10,119           | 11,031           |
| 383.12           | 7,630<br>7,677 | 6,416          | 383.65           | 10,167           | 11,132           |
| 383.13<br>383.14 | 7,725          | 6,493<br>6,570 | 383.66<br>383.67 | 10,215<br>10,263 | 11,234<br>11,337 |
| 383.15           |                | 6,647          |                  |                  | 11,439           |
| 383.16           | 7,773<br>7,821 | 6,725          | 383.68<br>383.69 | 10,311<br>10,359 | 11,543           |
| 383.17           | 7,869          | 6,804          | 383.70           | 10,407           | 11,647           |
| 383.18           | 7,917          | 6,882          | 383.71           | 10,454           | 11,751           |
| 383.19           | 7,965          | 6,962          | 383.72           | 10,502           | 11,856           |
| 383.20           | 8,013          | 7,042          | 383.73           | 10,550           | 11,961           |
| 383.21           | 8,060          | 7,122          | 383.74           | 10,598           | 12,067           |
| 383.22           | 8,108          | 7,203          | 383.75           | 10,646           | 12,173           |
| 383.23           | 8,156          | 7,284          | 383.76           | 10,694           | 12,280           |
| 383.24           | 8,204          | 7,366          | 383.77           | 10,742           | 12,387           |
| 383.25           | 8,252          | 7,448          | 383.78           | 10,790           | 12,494           |
| 383.26           | 8,300          | 7,531          | 383.79           | 10,838           | 12,603           |
| 383.27           | 8,348          | 7,614          | 383.80           | 10,885           | 12,711           |
| 383.28           | 8,396          | 7,698          | 383.81           | 10,933           | 12,820           |
| 383.29           | 8,444          | 7,782          | 383.82           | 10,981           | 12,930           |
| 383.30           | 8,491          | 7,867          | 383.83           | 11,029           | 13,040           |
| 383.31           | 8,539          | 7,952          | 383.84           | 11,077           | 13,150           |
| 383.32           | 8,587          | 8,038          | 383.85           | 11,125           | 13,261           |
| 383.33           | 8,635          | 8,124          | 383.86           | 11,173           | 13,373           |
| 383.34           | 8,683          | 8,210          | 383.87           | 11,221           | 13,485           |
| 383.35           | 8,731          | 8,298          | 383.88           | 11,268           | 13,597           |
| 383.36           | 8,779          | 8,385          | 383.89           | 11,316           | 13,710           |
| 383.37           | 8,827          | 8,473          | 383.90           | 11,364           | 13,824           |
| 383.38           | 8,874          | 8,562          | 383.91           | 11,412           | 13,938           |
| 383.39           | 8,922          | 8,651          | 383.92           | 11,460           | 14,052           |

J1340008 - Detention Time

Type II 24-hr 10-Year Rainfall=4.70"

Prepared by The Mannik & Smith Group


HydroCAD® 10.00-11 s/n 08386 © 2014 HydroCAD Software Solutions LLC

Printed 11/14/2016

Page 8

# Stage-Area-Storage for Pond N: North Basin (continued)

| Elevation<br>(feet) | Surface<br>(sq-ft) | Storage (cubic-feet) |
|---------------------|--------------------|----------------------|
| 383.93              | 11,508             | 14,167               |
| 383.94              | 11,556             | 14,282               |
| 383.95              | 11,604             | 14,398               |
| 383.96              | 11,651             | 14,514               |
| 383.97              | 11,699             | 14,631               |
| 383.98              | 11,747             | 14,748               |
| 383.99              | 11,795             | 14,866               |
| 384.00              | 11,843             | 14,984               |



# South Basin









Routing Diagram for J1340008 - Detention Time
Prepared by The Mannik & Smith Group, Printed 11/14/2016
HydroCAD® 10.00-11 s/n 08386 © 2014 HydroCAD Software Solutions LLC

# J1340008 - Detention Time

Type II 24-hr 10-Year Rainfall=4.70"

Prepared by The Mannik & Smith Group

Printed 11/14/2016

HydroCAD® 10.00-11 s/n 08386 © 2014 HydroCAD Software Solutions LLC

Page 2

# **Summary for Pond S: South Basin**

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Outflow = 3.82 cfs @ 0.00 hrs, Volume= 0.124 af, Atten= 0%, Lag= 0.0 min

Primary = 3.82 cfs @ 0.00 hrs, Volume= 0.124 af

Routing by Stor-Ind method, Time Span= 0.00-2.00 hrs, dt= 0.05 hrs

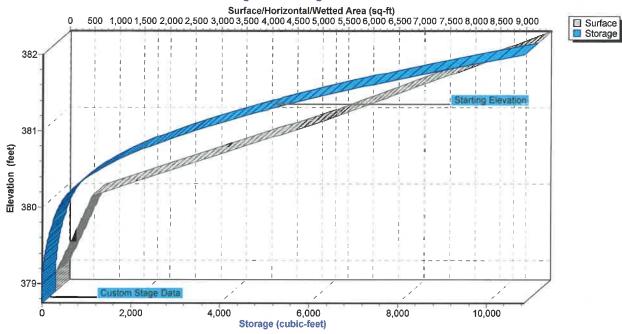
Starting Elev= 381.28' Surf.Area= 6,522 sf Storage= 5,069 cf

Peak Elev= 381.28' @ 0.00 hrs Surf.Area= 6,522 sf Storage= 5,069 cf

Plug-Flow detention time= (not calculated: no plugs found)

Center-of-Mass det. time= (not calculated: no inflow)

| Volume         | Inv     | vert Avai            | I.Storage       | Storage           | Description               |                                |
|----------------|---------|----------------------|-----------------|-------------------|---------------------------|--------------------------------|
| #1             | 378.    | 75'                  | 10,834 cf       | Custon            | n Stage Data (Pr          | rismatic)Listed below (Recalc) |
| Elevation (fee |         | Surf.Area<br>(sq-ft) |                 | .Store<br>c-feet) | Cum.Store<br>(cubic-feet) |                                |
| 378.7          | 75      | 2                    |                 | 0                 | 0                         |                                |
| 379.0          | 00      | 5                    |                 | 1                 | 1                         |                                |
| 380.0          | 00      | 718                  |                 | 362               | 362                       |                                |
| 381.0          | 00      | 5,366                |                 | 3,042             | 3,404                     |                                |
| 382.0          | 00      | 9,493                |                 | 7,430             | 10,834                    |                                |
| Device         | Routing | In                   | vert Outle      | et Device         | es                        |                                |
| #1             | Primary | 378                  | .75' <b>Cus</b> | tom Wei           | r/Orifice, Cv= 2.         | 62 (C= 3.28)                   |
|                | -       |                      | Head            | d (feet) (        | 0.00 3.25                 |                                |
|                |         |                      | Widt            | h (feet)          | 0.29 0.29                 |                                |


Primary OutFlow Max=3.82 cfs @ 0.00 hrs HW=381.28' (Free Discharge)
1=Custom Weir/Orifice (Weir Controls 3.82 cfs @ 5.21 fps)

Printed 11/14/2016

Page 3

# **Pond S: South Basin**





Printed 11/14/2016

Page 4

# Hydrograph for Pond S: South Basin

| Time<br>(hours) | Inflow<br>(cfs) | Storage (cubic-feet) | Elevation (feet) | Primary<br>(cfs) |
|-----------------|-----------------|----------------------|------------------|------------------|
| 0.00            | 0.00            | 5,069                | 381.28           | 3.82             |
| 0.05            | 0.00            | 4,402                | 381.17           | 3.58             |
| 0.10            | 0.00            | 3,778                | 381.07           | 3.35             |
| 0.15            | 0.00            | 3,195                | 380.96           | 3.12             |
| 0.20            | 0.00            | 2,654                | 380.85           | 2.89             |
| 0.25            | 0.00            | 2,155                | 380.74           | 2.66             |
| 0.30            | 0.00            | 1,697                | 380.62           | 2.43             |
| 0.35            | 0.00            | 1,282                | 380.49           | 2.19             |
| 0.40            | 0.00            | 911                  | 380.36           | 1.93             |
| 0.45            | 0.00            | 589                  | 380.19           | 1.65             |
| 0.50            | 0.00            | 328                  | 379.95           | 1.25             |
| 0.55            | 0.00            | 145                  | 379.63           | 0.78             |
| 0.60            | 0.00            | 38                   | 379.32           | 0.41             |
| 0.65            | 0.00            | 0                    | 378.82           | 0.02             |
| 0.70            | 0.00            | 0                    | 378.75           | 0.00             |
| 0.75            | 0.00            | 0                    | 378.75           | 0.00             |
| 0.80            | 0.00            | 0                    | 378.75           | 0.00             |
| 0.85            | 0.00            | 0                    | 378.75           | 0.00             |
| 0.90            | 0.00            | 0                    | 378.75           | 0.00             |
| 0.95<br>1.00    | 0.00<br>0.00    | 0<br>0               | 378.75           | 0.00             |
| 1.05            | 0.00            | 0                    | 378.75<br>378.75 | 0.00<br>0.00     |
| 1.10            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.15            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.20            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.25            | 0.00            | ő                    | 378.75           | 0.00             |
| 1.30            | 0.00            | ŏ                    | 378.75           | 0.00             |
| 1.35            | 0.00            | Ö                    | 378.75           | 0.00             |
| 1.40            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.45            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.50            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.55            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.60            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.65            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.70            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.75            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.80            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.85            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.90            | 0.00            | 0                    | 378.75           | 0.00             |
| 1.95            | 0.00            | 0                    | 378.75           | 0.00             |
| 2.00            | 0.00            | 0                    | 378.75           | 0.00             |

Printed 11/14/2016

Page 5

# Stage-Area-Storage for Pond S: South Basin

| Elevation (feet) | Surface<br>(sq-ft) | Storage<br>(cubic-feet) | Elevation (feet) | Surface<br>(sq-ft) | Storage<br>(cubic-feet) |
|------------------|--------------------|-------------------------|------------------|--------------------|-------------------------|
| 378.75           | 2                  | 0                       | 379.28           | 205                | 30                      |
| 378.76           | 2                  | 0                       | 1                |                    |                         |
| 378.77           | 2<br>2             | 0                       | 379.29           | 212                | 32                      |
|                  | 2                  |                         | 379.30           | 219                | 34                      |
| 378.78           | 2<br>2<br>3        | 0                       | 379.31           | 226                | 37                      |
| 378.79           | 2                  | 0                       | 379.32           | 233                | 39                      |
| 378.80           | 3                  | 0                       | 379.33           | 240                | 41                      |
| 378.81           | 3                  | 0                       | 379.34           | 247                | 44                      |
| 378.82           | 3                  | 0                       | 379.35           | 255                | 46                      |
| 378.83           | 3                  | 0                       | 379.36           | 262                | 49                      |
| 378.84           | 3<br>3<br>3<br>3   | 0                       | 379.37           | 269                | 52                      |
| 378.85           | 3                  | 0                       | 379.38           | 276                | 54                      |
| 378.86           | 3<br>3             | 0                       | 379.39           | 283                | 57                      |
| 378.87           |                    | 0                       | 379.40           | 290                | 60                      |
| 378.88           | 4                  | 0                       | 379.41           | 297                | 63                      |
| 378.89           | 4                  | 0                       | 379.42           | 304                | 66                      |
| 378.90           | 4                  | 0                       | 379.43           | 312                | 69                      |
| 378.91           | 4                  | 0                       | 379.44           | 319                | 72                      |
| 378.92           | 4                  | 1                       | 379.45           | 326                | 75                      |
| 378.93           | 4                  | 1                       | 379.46           | 333                | 79                      |
| 378.94           | 4                  | 1                       | 379.47           | 340                | 82                      |
| 378.95           | 4                  | 1                       | 379.48           | 347                | 85                      |
| 378.96           | 5                  | 1                       | 379.49           | 354                | 89                      |
| 378.97           | 5                  | 1                       | 379.50           | 362                | 93                      |
| 378.98           | 5                  | 1                       | 379.51           | 369                | 96                      |
| 378.99           | 5                  | 1                       | 379.52           | 376                | 100                     |
| 379.00           | 5                  | 1                       | 379.53           | 383                | 104                     |
| 379.01           | 12                 | 1                       | 379.54           | 390                | 108                     |
| 379.02           | 19                 | 1                       | 379.55           | 397                | 111                     |
| 379.03           | 26                 | 1                       | 379.56           | 404                | 115                     |
| 379.04           | 34                 | 2                       | 379.57           | 411                | 120                     |
| 379.05           | 41                 | 2                       | 379.58           | 419                | 124                     |
| 379.06           | 48                 | 2                       | 379.59           | 426                | 128                     |
| 379.07           | 55                 | 3                       | 379.60           | 433                | 132                     |
| 379.08           | 62                 | 4                       | 379.61           | 440                | 137                     |
| 379.09           | 69                 | 4                       | 379.62           | 447                | 141                     |
| 379.10           | 76                 | 5                       | 379.63           | 454                | 146                     |
| 379.11           | 83                 | 6                       | 379.64           | 461                | 150                     |
| 379.12           | 91                 | 7                       | 379.65           | 468                | 155                     |
| 379.12           | 98                 | 8                       | 379.66           | 476                | 159                     |
| 379.14           | 105                | 9                       | 379.67           | 483                | 164                     |
| 379.15           | 112                | 10                      | 379.68           | 490                | 169                     |
| 379.16           | 119                | 11                      | 379.69           | 490<br>497         | 174                     |
| 379.10           | 126                | 12                      | 379.70           | 504                | 174                     |
| 379.17           | 133                | 13                      | 379.70           | 504<br>511         |                         |
| 379.10           | 140                | 15                      |                  | 518                | 184                     |
| 379.19           |                    |                         | 379.72           |                    | 189                     |
| 379.20<br>379.21 | 148<br>155         | 16<br>18                | 379.73           | 525<br>533         | 195                     |
| 379.21           | 162                |                         | 379.74           | 533                | 200                     |
| 379.22<br>379.23 | 162                | 19                      | 379.75           | 540<br>547         | 205                     |
|                  |                    | 21                      | 379.76           | 547<br>554         | 211                     |
| 379.24<br>379.25 | 176                | 23                      | 379.77           | 554<br>561         | 216                     |
|                  | 183                | 24                      | 379.78           | 561                | 222                     |
| 379.26           | 190                | 26                      | 379.79           | 568<br>575         | 227                     |
| 379.27           | 198                | 28                      | 379.80           | 575                | 233                     |

Printed 11/14/2016

Page 6

# Stage-Area-Storage for Pond S: South Basin (continued)

|                  |                |              | t =              |                |                |
|------------------|----------------|--------------|------------------|----------------|----------------|
| Elevation        | Surface        | Storage      | Elevation        | Surface        | Storage        |
| (feet)           | (sq-ft)        | (cubic-feet) | (feet)           | (sq-ft)        | (cubic-feet)   |
| 379.81           | 583            | 239          | 380.34           | 2,298          | 875            |
| 379.82<br>379.83 | 590            | 245          | 380.35           | 2,345          | 898            |
|                  | 597            | 251<br>257   | 380.36           | 2,391          | 922            |
| 379.84           | 604<br>611     | 257          | 380.37           | 2,438          | 946            |
| 379.85<br>379.86 | 618            | 263<br>269   | 380.38<br>380.39 | 2,484          | 971            |
| 379.87           | 625            | 209<br>275   | 380.40           | 2,531<br>2,577 | 996<br>1,021   |
| 379.88           | 632            | 281          | 380.41           | 2,624          | 1,021          |
| 379.89           | 640            | 288          | 380.42           | 2,670          | 1,047          |
| 379.90           | 647            | 294          | 380.43           | 2,717          | 1,101          |
| 379.91           | 654            | 301          | 380.44           | 2,763          | 1,128          |
| 379.92           | 661            | 307          | 380.45           | 2,810          | 1,156          |
| 379.93           | 668            | 314          | 380.46           | 2,856          | 1,184          |
| 379.94           | 675            | 321          | 380.47           | 2,903          | 1,213          |
| 379.95           | 682            | 327          | 380.48           | 2,949          | 1,242          |
| 379.96           | 689            | 334          | 380.49           | 2,996          | 1,272          |
| 379.97           | 697            | 341          | 380.50           | 3,042          | 1,302          |
| 379.98           | 704            | 348          | 380.51           | 3,088          | 1,333          |
| 379.99           | 711            | 355          | 380.52           | 3,135          | 1,364          |
| 380.00           | 718            | 362          | 380.53           | 3,181          | 1,396          |
| 380.01           | 764            | 370          | 380.54           | 3,228          | 1,428          |
| 380.02           | 811            | 378          | 380.55           | 3,274          | 1,460          |
| 380.03           | 857            | 386          | 380.56           | 3,321          | 1,493          |
| 380.04           | 904            | 395          | 380.57           | 3,367          | 1,527          |
| 380.05           | 950            | 404          | 380.58           | 3,414          | 1,561          |
| 380.06           | 997            | 414          | 380.59           | 3,460          | 1,595          |
| 380.07           | 1,043          | 424          | 380.60           | 3,507          | 1,630          |
| 380.08           | 1,090          | 435          | 380.61           | 3,553          | 1,665          |
| 380.09           | 1,136          | 446          | 380.62           | 3,600          | 1,701          |
| 380.10           | 1,183          | 457          | 380.63           | 3,646          | 1,737          |
| 380.11           | 1,229          | 469          | 380.64           | 3,693          | 1,774          |
| 380.12<br>380.13 | 1,276<br>1,322 | 482<br>495   | 380.65           | 3,739          | 1,811          |
| 380.14           | 1,369          | 508          | 380.66<br>380.67 | 3,786<br>3,832 | 1,849<br>1,887 |
| 380.15           | 1,415          | 522          | 380.68           | 3,879          | 1,925          |
| 380.16           | 1,462          | 537          | 380.69           | 3,925          | 1,964          |
| 380.17           | 1,508          | 552          | 380.70           | 3,972          | 2,004          |
| 380.18           | 1,555          | 567          | 380.71           | 4,018          | 2,044          |
| 380.19           | 1,601          | 583          | 380.72           | 4,065          | 2,084          |
| 380.20           | 1,648          | 599          | 380.73           | 4,111          | 2,125          |
| 380.21           | 1,694          | 616          | 380.74           | 4,158          | 2,166          |
| 380.22           | 1,741          | 633          | 380.75           | 4,204          | 2,208          |
| 380.23           | 1,787          | 650          | 380.76           | 4,250          | 2,250          |
| 380.24           | 1,834          | 669          | 380.77           | 4,297          | 2,293          |
| 380.25           | 1,880          | 687          | 380.78           | 4,343          | 2,336          |
| 380.26           | 1,926          | 706          | 380.79           | 4,390          | 2,380          |
| 380.27           | 1,973          | 726          | 380.80           | 4,436          | 2,424          |
| 380.28           | 2,019          | 746          | 380.81           | 4,483          | 2,469          |
| 380.29           | 2,066          | 766          | 380.82           | 4,529          | 2,514          |
| 380.30           | 2,112          | 787          | 380.83           | 4,576          | 2,559          |
| 380.31           | 2,159          | 808          | 380.84           | 4,622          | 2,605          |
| 380.32           | 2,205          | 830          | 380.85           | 4,669          | 2,652          |
| 380.33           | 2,252          | 852          | 380.86           | 4,715          | 2,699          |

Printed 11/14/2016

Page 7

# Stage-Area-Storage for Pond S: South Basin (continued)

| Elevation        | Surface        | Storage        | Elevation        | Surface        | Storage        |
|------------------|----------------|----------------|------------------|----------------|----------------|
| (feet)           | (sq-ft)        | (cubic-feet)   | (feet)           | (sq-ft)        | (cubic-feet)   |
| 380.87           | 4,762          | 2,746          | 381.40           | 7,017          | 5,881          |
| 380.88           | 4,808          | 2,794          | 381.41           | 7,058          | 5,951          |
| 380.89           | 4,855          | 2,842          | 381.42           | 7,099          | 6,022          |
| 380.90           | 4,901          | 2,891          | 381.43           | 7,141          | 6,093          |
| 380.91           | 4,948          | 2,940          | 381.44           | 7,182          | 6,165          |
| 380.92           | 4,994          | 2,990          | 381.45           | 7,223          | 6,237          |
| 380.93           | 5,041          | 3,040          | 381.46           | 7,264          | 6,309          |
| 380.94           | 5,087          | 3,091          | 381.47           | 7,306          | 6,382          |
| 380.95           | 5,134          | 3,142          | 381.48           | 7,347          | 6,455          |
| 380.96           | 5,180          | 3,193          | 381.49           | 7,388          | 6,529          |
| 380.97           | 5,227          | 3,245          | 381.50           | 7,430          | 6,603          |
| 380.98           | 5,273          | 3,298          | 381.51           | 7,471          | 6,678          |
| 380.99<br>381.00 | 5,320<br>5,366 | 3,351<br>3,404 | 381.52           | 7,512          | 6,753          |
| 381.01           | 5,407          | 3,458          | 381.53<br>381.54 | 7,553          | 6,828          |
| 381.02           | 5,449          | 3,513          | 381.55           | 7,595<br>7,636 | 6,904<br>6,980 |
| 381.03           | 5,490          | 3,567          | 381.56           | 7,636<br>7,677 | 7,056          |
| 381.04           | 5,531          | 3,622          | 381.57           | 7,718          | 7,030<br>7,133 |
| 381.05           | 5,572          | 3,678          | 381.58           | 7,760          | 7,133<br>7,211 |
| 381.06           | 5,614          | 3,734          | 381.59           | 7,700          | 7,211          |
| 381.07           | 5,655          | 3,790          | 381.60           | 7,842          | 7,367          |
| 381.08           | 5,696          | 3,847          | 381.61           | 7,883          | 7,445          |
| 381.09           | 5,737          | 3,904          | 381.62           | 7,925          | 7,525          |
| 381.10           | 5,779          | 3,962          | 381.63           | 7,966          | 7,604          |
| 381.11           | 5,820          | 4,020          | 381.64           | 8,007          | 7,684          |
| 381.12           | 5,861          | 4,078          | 381.65           | 8,049          | 7,764          |
| 381.13           | 5,903          | 4,137          | 381.66           | 8,090          | 7,845          |
| 381.14           | 5,944          | 4,196          | 381.67           | 8,131          | 7,926          |
| 381.15           | 5,985          | 4,256          | 381.68           | 8,172          | 8,007          |
| 381.16           | 6,026          | 4,316          | 381.69           | 8,214          | 8,089          |
| 381.17           | 6,068          | 4,376          | 381.70           | 8,255          | 8,172          |
| 381.18           | 6,109          | 4,437          | 381.71           | 8,296          | 8,254          |
| 381.19           | 6,150          | 4,498          | 381.72           | 8,337          | 8,338          |
| 381.20           | 6,191          | 4,560          | 381.73           | 8,379          | 8,421          |
| 381.21           | 6,233          | 4,622          | 381.74           | 8,420          | 8,505          |
| 381.22           | 6,274          | 4,685          | 381.75           | 8,461          | 8,590          |
| 381.23           | 6,315          | 4,748          | 381.76           | 8,503          | 8,674          |
| 381.24           | 6,356          | 4,811          | 381.77           | 8,544          | 8,760          |
| 381.25           | 6,398          | 4,875          | 381.78           | 8,585          | 8,845          |
| 381.26           | 6,439          | 4,939          | 381.79           | 8,626          | 8,931          |
| 381.27<br>381.28 | 6,480<br>6,533 | 5,004          | 381.80           | 8,668          | 9,018          |
| 381.29           | 6,522<br>6,563 | 5,069<br>5,134 | 381.81           | 8,709<br>8,750 | 9,105          |
| 381.30           | 6,604          | 5,200          | 381.82<br>381.83 | 8,750<br>8,791 | 9,192<br>9,280 |
| 381.31           | 6,645          | 5,266          | 381.84           | 8,833          | 9,368          |
| 381.32           | 6,687          | 5,333          | 381.85           | 8,874          | 9,456          |
| 381.33           | 6,728          | 5,400          | 381.86           | 8,915          | 9,545          |
| 381.34           | 6,769          | 5,467          | 381.87           | 8,956          | 9,635          |
| 381.35           | 6,810          | 5,535          | 381.88           | 8,998          | 9,724          |
| 381.36           | 6,852          | 5,604          | 381.89           | 9,039          | 9,815          |
| 381.37           | 6,893          | 5,672          | 381.90           | 9,080          | 9,905          |
| 381.38           | 6,934          | 5,741          | 381.91           | 9,122          | 9,996          |
| 381.39           | 6,976          | 5,811          | 381.92           | 9,163          | 10,088         |
|                  |                | ,              |                  |                |                |

J1340008 - Detention Time

Type II 24-hr 10-Year Rainfall=4.70"

Printed 11/14/2016

Prepared by The Mannik & Smith Group
HydroCAD® 10.00-11 s/n 08386 © 2014 HydroCAD Software Solutions LLC

Page 8

# Stage-Area-Storage for Pond S: South Basin (continued)

| Elevation | Surface | Storage      |
|-----------|---------|--------------|
| (feet)    | (sq-ft) | (cubic-feet) |
| 381.93    | 9,204   | 10,179       |
| 381.94    | 9,245   | 10,272       |
| 381.95    | 9,287   | 10,364       |
| 381.96    | 9,328   | 10,457       |
| 381.97    | 9,369   | 10,551       |
| 381.98    | 9,410   | 10,645       |
| 381.99    | 9,452   | 10,739       |
| 382.00    | 9,493   | 10,834       |

# **APPENDIX D** 2005 DEVELOPMENT DETENTION CALCULATIONS REFERENCE





### **Transmittal**

If enclosures are not received as noted below, please call sender or Woolpert at 614.476.6000

| Date:       | January 19                                                                           | , 2005                                        | Re: Dayton Freight- Evansville, IN                                       |
|-------------|--------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|
| To:         | Bill Jeffers,<br>Vanderburg<br>Civic Cente<br>1 NW ML k<br>Evansville,<br>PH: 812.43 | gh Count<br>er, Room<br>(ing Jr. B<br>IN 4770 | 325 Shipped Via: UPS Ground vd                                           |
| We are      | sending you                                                                          |                                               |                                                                          |
| Shore Other | Drawings<br>r                                                                        | □ Sa                                          | amples Specifications Plans Change Order                                 |
| Copies      | Date                                                                                 | No.                                           | Description                                                              |
| 3 sets      | 1-18-05                                                                              |                                               | Final Construction Dwgs for Drain Commission review.                     |
| 5 shts      | 1-18-05                                                                              |                                               | Storm Detention Calculations                                             |
|             |                                                                                      |                                               |                                                                          |
| Remarks     | S:<br>eview and appro                                                                | val.                                          |                                                                          |
| Copy To     | :                                                                                    |                                               | RECEIVED BY THE VANDERBURGH COUNTY SURVEYOR'S OFFICE //20/05 7.30 am. p1 |

WOOLPERT, INC. 2760 Airport Drive, Suite 140 • Columbus, Ohio 43219 614.476.6000 • Fax 614.476.6225 • www.woolpert.com

Signature:

Steven C. Hermiller, PE

### **Hydrograph Summary Report**

Page 1

| Hyd.<br>No. | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>peak<br>(min) | Volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Maximum<br>storage<br>(cuft) | Hydrograph<br>description                                      |
|-------------|--------------------------------|-----------------------|---------------------------|--------------------------|------------------|------------------|------------------------------|------------------------------|----------------------------------------------------------------|
| 1           | Rational                       | 7.31                  | 1                         | 10                       | 4,385            |                  | 10000A                       |                              | Pre Developed                                                  |
| 2           | Rational                       | 12.79                 | 1                         | 10                       | 7,674            | *****            | unonna                       |                              | Post Developed                                                 |
| 3           | Reservoir                      | 6.43                  | 1                         | 15                       | 7,672            | 2                | 383.89                       | 4,360                        | Route 25 thru 10 Yr Sur Pow 5                                  |
| 5           | Rational                       | 8.64                  | 1                         | 10                       | 5,182            |                  |                              | *******                      |                                                                |
| 6           | Rational                       | 15.55                 | 1                         | 10                       | 9,328            | _                |                              | *******                      | Post Developed                                                 |
| 7           | Reservoir                      | 7.67                  | 1                         | 15                       | 9,327            | 6                | 384.46                       | 4,154                        | Pre Developed  Post Developed  Route 25 thru 10 Yr Menth Paw D |
|             | 3.2                            |                       |                           |                          |                  | <u> </u>         |                              |                              |                                                                |
|             |                                |                       |                           |                          |                  |                  |                              |                              |                                                                |
|             |                                |                       |                           |                          |                  |                  |                              |                              |                                                                |
|             |                                |                       |                           |                          |                  |                  | ř                            |                              |                                                                |
|             |                                |                       |                           |                          | 4                |                  |                              |                              | . , .                                                          |
|             |                                |                       |                           |                          |                  |                  |                              |                              |                                                                |
|             |                                |                       |                           |                          | 1                |                  |                              | j                            |                                                                |
|             |                                |                       |                           |                          |                  |                  | \$                           |                              |                                                                |
|             |                                |                       | 1                         |                          |                  |                  |                              |                              |                                                                |
| Proj.       | file: DayFrl                   | t Evanl               | N- Detn                   | Rpt.g <b>ß</b>           | turn Per         | iod: 25 yr       |                              | Run date                     | e: 01-14 <b>-</b> 2005                                         |

Hydraflow Hydrographs by Intelisolve

| Hyd. | . Hydrograph Inflow type Hyd(s) Peak Outflow (cfs) |                |         |         |        |      |       |       |       |         | Hydrograph                    |
|------|----------------------------------------------------|----------------|---------|---------|--------|------|-------|-------|-------|---------|-------------------------------|
| No.  | type<br>(origin)                                   | Hyd(s)         | 1-Yr    | 2-Yr    | 3-Yr   | 5-Yr | 10-Yr | 25-Yr | 50-Yr | 100-Yr  | description                   |
| 1    | Rational                                           |                |         | Poweren | ****** |      | 6.48  | 7.31  |       |         | Pre Developed                 |
| 2    | Rational                                           | tracking as to | ******* |         |        |      | 11.34 | 12.79 |       |         | Post Developed                |
| 3    | Reservoir                                          | 2              |         |         |        |      | 5.54  | 6.43  |       |         | Route 25 thru 10 Yr South Pow |
| 5    | Rational                                           |                |         |         |        |      | 7.66  | 8.64  |       |         | Pre Developed                 |
| 6    | Rational                                           |                |         |         |        |      | 13.79 | 15.55 |       |         | Post Developed                |
| 7    | Reservoir                                          | 6              |         |         |        |      | 7.04  | 7.67  |       |         | Route 25 thru 10 Yr North Por |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        | Ì    | 4     |       |       |         |                               |
|      |                                                    |                |         |         |        |      | Ì     | 3     |       |         |                               |
|      |                                                    | ſ              |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       | Ì     |         |                               |
|      |                                                    |                |         | ŀ       |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       |       | ĺ       |                               |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         | į.      |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        | į.   |       |       |       |         |                               |
|      |                                                    |                | Í       |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         | 1       |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
|      |                                                    |                |         |         |        |      |       |       |       |         |                               |
| roj. | file: DayFr                                        | t Evanll       | N- Detr | Rpt.gp  | W      |      |       |       | Ru    | ın date | : 01-14-2005                  |

Hydraflow Hydrographs by Intelisolve

### Reservoir No. 2 - North Pond Storage

### **Pond Data**

Pond storage is based on known contour areas. Average end area method used.

| Stane | 1 | Storage        | Ta | ы    | 6 |
|-------|---|----------------|----|------|---|
| JUNE  |   | <b>Stoland</b> |    | . DI |   |

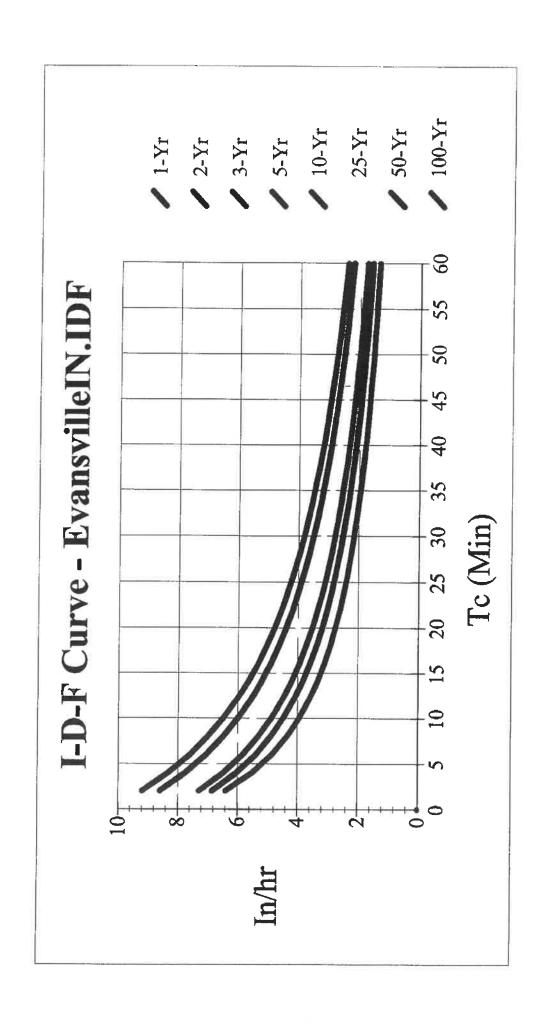
| Stage (ft) | Elevation (ft) | Contour area (sqft) | Incr. Storage (cuft) | Total storage (cuft) |
|------------|----------------|---------------------|----------------------|----------------------|
| 0.00       | 383.60         | 100                 | 0                    | 0                    |
| 0.10       | 383.70         | 500                 | 30                   | 30                   |
| 0.20       | 383.80         | 1,000               | 75                   | 105                  |
| 0.30       | 383,90         | 2,000               | 150                  | 255                  |
| 0.40       | 384.00         | 2,500               | 225                  | 480                  |
| 0.50       | 384.10         | 4,000               | 325                  | 805                  |
| 0.60       | 384.20         | 8,000               | 600                  | 1,405                |
| 0.70       | 384.30         | 10,000              | 900                  | 2,305                |
| 0.80       | 384.40         | 12,000              | 1,100                | 3,405                |
| 0.90       | 384.50         | 14,000              | 1,300                | 4,705                |

| Culvert / O   | rifice Struct | ures |      | Weir Struct | Weir Structures |                  |             |            |           |  |  |
|---------------|---------------|------|------|-------------|-----------------|------------------|-------------|------------|-----------|--|--|
|               | [A]           | [B]  | [C]  | [D]         |                 | [A]              | [B]         | [C]        | [D]       |  |  |
| Rise in       | = 0.0         | 0.0  | 0.0  | 0.0         | Crest Len ft    | = 2.90           | 0.00        | 0.00       | 0.00      |  |  |
| Span in       | = 0.0         | 0.0  | 0.0  | 0.0         | Crest El. ft    | = 383.60         | 0.00        | 0.00       | 0.00      |  |  |
| No. Barrels   | = 0           | 0    | 0    | 0           | Weir Coeff.     | = 3.33           | 0.00        | 0.00       | 0.00      |  |  |
| Invert El. ft | = 0.00        | 0.00 | 0.00 | 0.00        | Weir Type       | = Ciplti         |             |            |           |  |  |
| Length ft     | = 0.0         | 0.0  | 0.0  | 0.0         | Multi-Stage     | = No             | No          | No         | No        |  |  |
| Slope %       | = 0.00        | 0.00 | 0.00 | 0.00        | _               |                  |             |            |           |  |  |
| N-Value       | = .000        | .000 | .000 | .000        |                 |                  |             |            |           |  |  |
| Orif. Coeff.  | = 0.00        | 0.00 | 0.00 | 0.00        |                 |                  |             |            |           |  |  |
| Multi-Stage   | = n/a         | No   | No   | No          | Exfiltration Pa | te = 0.00  in/hr | /enft Taile | water Flev | = 0.00 ft |  |  |

| Stage /     | Storage /    | Discharge    | Table        |              |              |              |             | Note. All   | outilows nave | peerr analyze | o under met ant | ovaet control. |
|-------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|---------------|---------------|-----------------|----------------|
| Stage<br>ft | Storage cuft | Elevation ft | CIv A<br>cfs | Clv B<br>cfs | Civ C<br>cfs | Clv D<br>cfs | Wr A<br>cfs | Wr B<br>cfs | Wr C<br>cfs   | Wr D<br>cfs   | Exfil<br>cfs    | Total<br>cfs   |
| 0.00        | 0            | 383.60       |              |              | -            |              | 0.00        |             |               | <del></del>   |                 | 0.00           |
| 0.10        | 30           | 383.70       |              | ****         |              |              | 0.31        | _           |               | ***           |                 | 0.31           |
| 0.20        | 105          | 383.80       |              |              |              |              | 0.86        |             |               |               |                 | 0.86           |
| 0.30        | 255          | 383.90       |              |              |              | Barbarah.    | 1.59        |             |               |               |                 | 1.59           |
| 0.40        | 480          | 384.00       |              |              |              |              | 2.44        | el term     | -             |               |                 | 2.44           |
| 0.50        | 805          | 384.10       | ****         |              | -            |              | 3.41        |             |               | ~~~           |                 | 3,41           |
| 0.60        | 1,405        | 384.20       |              |              |              |              | 4.49        |             |               |               |                 | 4.49           |
| 0.70        | 2,305        | 384.30       |              | ***          |              |              | 5.66        |             |               | -             |                 | 5.66           |
| 0.80        | 3,405        | 384.40       |              |              |              |              | 6.91        |             | ~==           | ***           |                 | 6.91           |
| 0.90        | 4,705        | 384.50       |              | ***          | ***          |              | 8.25        |             |               |               | lead-till       | 8.25           |

Hydraflow Hydrographs by Intelisolve

### Reservoir No. 1 - South Pond Storage


**Pond Data** 

Pond storage is based on known contour areas. Average end area method used.

| Stage | / Storage | Table |
|-------|-----------|-------|
|       |           |       |

| Stage (ft)    | Elev        | ation (ft)   | Contour    | area (sqft) | ) Inc | cr. Storage (cı | ift)   | Total sto | rage (cuft)     |             |                    |                |
|---------------|-------------|--------------|------------|-------------|-------|-----------------|--------|-----------|-----------------|-------------|--------------------|----------------|
| 0.00<br>1.00  |             | 00.00<br>00, | 60<br>9,20 |             |       | 0<br>4,900      |        | 4,9       | 0               |             |                    |                |
| Culvert / C   | Orifice Str | uctures      |            |             |       | Weir Stru       | ture   | s         |                 |             |                    |                |
|               | [A          | j [B]        | [C]        | [D]         |       |                 |        | [A]       | [B]             | [C]         | [D]                |                |
| Rise in       | = 0.0       | 0.0          | 0.0        | 0.0         |       | Crest Len ft    | _      | 2.30      | 0.00            | 0.00        | 0.00               |                |
| Span In       | = 0.0       | 0.0          | 0.0        | 0.0         |       | Crest El. ft    | =      | 383.00    | 0.00            | 0.00        | 0.00               |                |
| No. Barrels   | = 0         | 0            | 0          | 0           |       | Weir Coeff.     | =      | 3.33      | 0.00            | 0.00        | 0.00               |                |
| Invert El. ft | = 0.00      | 0.00         | 0.00       | 0.00        |       | Weir Type       | =      | Cipiti    | ***             |             |                    |                |
| Length ft     | = 0.0       | 0.0          | 0.0        | 0.0         |       | Multi-Stage     | =      | No        | No              | No          | No                 |                |
| Slope %       | = 0.00      | 0.00         | 0.00       | 0.00        |       | _               |        |           |                 |             |                    |                |
| N-Value       | = .013      | .000         | 000.       | .000        |       |                 |        |           |                 |             |                    |                |
| Orlf. Coeff.  | = 0.60      | 0.00         | 0.00       | 0.00        |       |                 |        |           |                 |             |                    |                |
| Multi-Stage   | = n/a       | No           | No         | No          |       | Exfiltration I  | tate = | 0.00 in/h | r/sqft Tailwa   | ater Elev.  | = 0.00 ft          |                |
| Stage / Sta   | orage / Di  | scharge T    | able       |             |       |                 |        | Note: All | outflows have b | een analyze | ed under inlet and | outlet control |
| Stage S       | •           | •            | Clv A      | CIV B       | Civ C |                 | Vr A   | Wr B      | Wr C            | Wr D        | Exfil<br>cfs       | Tota<br>cfs    |

| Stage /     | Storage /    | Discharge       | Table        |              |              |       |             | Note: All   | outflows have | been analyze | ed under inlet and | outlet control. |
|-------------|--------------|-----------------|--------------|--------------|--------------|-------|-------------|-------------|---------------|--------------|--------------------|-----------------|
| Stage<br>ft | Storage cuft | Elevation<br>ft | Clv A<br>cfs | Clv B<br>cfs | Civ C<br>cfs | Civ D | Wr A<br>cfs | Wr B<br>cfs | Wr C<br>cfs   | Wr D<br>cfs  | Exfil<br>cfs       | Total<br>cfs    |
| 0.00        | 0            | 383.00          | _            | _            | _            | _     | 0.00        |             |               | ***          |                    | 0.00            |
| 1.00        | 4.900        | 384.00          | ***          |              |              |       | 7.66        |             |               |              |                    | 7.66            |



## **APPENDIX F** NRCS Soils Report Mannik Smith GROUP





**USDA** United States Department of Agriculture

Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

### **Custom Soil Resource** Report for Vanderburgh County, Indiana



### **Preface**

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means

for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

### Contents

| Preface                     | 2  |
|-----------------------------|----|
| Soil Map                    |    |
| Soil Map                    |    |
| Legend                      | 7  |
| Map Unit Legend             | 8  |
| Map Unit Descriptions       |    |
| Vanderburgh County, Indiana | 10 |
| Bd—Birds silt loam          |    |
| Ev—Evansville silt loam     | 11 |
| He—Henshaw silt loam        | 12 |
| References                  | 14 |

### Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



### MAP LEGEND

### measurements. or larger. Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads Stony Spot US Routes Spoil Area Wet Spot Other Rails Water Features **Transportation** Background W 8 C) Đ 4 Ī 1 Soil Map Unit Polygons Severely Eroded Spot Area of Interest (AOI) Miscellaneous Water Soil Map Unit Points Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Rock Outcrop Special Point Features Gravelly Spot Saline Spot Sandy Spot Slide or Slip Borrow Pit Lava Flow Gravel Pit Area of Interest (AOI) Clay Spot Sinkhole Landfill Blowout 9 Soils

## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Vanderburgh County, Indiana Survey Area Data: Version 15, Sep 11, 2015

Soil map units are labeled (as space allows) for map scales 1:50,000

Date(s) aerial images were photographed: Data not available.

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Sodic Spot

### **Map Unit Legend**

| Vanderburgh County, Indiana (IN163) |                      |              |                |  |  |  |  |  |  |  |
|-------------------------------------|----------------------|--------------|----------------|--|--|--|--|--|--|--|
| Map Unit Symbol                     | Map Unit Name        | Acres in AOI | Percent of AOI |  |  |  |  |  |  |  |
| Bd                                  | Birds silt loam      | 15.2         | 74.5%          |  |  |  |  |  |  |  |
| Ev                                  | Evansville silt loam | 2.1          | 10.4%          |  |  |  |  |  |  |  |
| He                                  | Henshaw silt loam    | 3.1          | 15.0%          |  |  |  |  |  |  |  |
| Totals for Area of Interest         | u'                   | 20.4         | 100.0%         |  |  |  |  |  |  |  |

### **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If

intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

### Vanderburgh County, Indiana

### **Bd—Birds silt loam**

### **Map Unit Setting**

National map unit symbol: 5gbh Elevation: 340 to 700 feet

Mean annual precipitation: 40 to 46 inches Mean annual air temperature: 52 to 57 degrees F

Frost-free period: 170 to 210 days

Farmland classification: Prime farmland if drained and either protected from flooding

or not frequently flooded during the growing season

### **Map Unit Composition**

Birds and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

### **Description of Birds**

### Setting

Landform: Backswamps on flood plains
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve

Down-slope shape: Concave Across-slope shape: Linear Parent material: Silty alluvium

### Typical profile

Ap - 0 to 12 inches: silt loam Bg - 12 to 52 inches: silt loam

Cg - 52 to 80 inches: stratified silt loam to loam

### Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Poorly drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: Frequent Frequency of ponding: Frequent

Available water storage in profile: Very high (about 13.2 inches)

### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: B/D

### Ev—Evansville silt loam

### **Map Unit Setting**

National map unit symbol: 5gbl Elevation: 360 to 600 feet

Mean annual precipitation: 40 to 46 inches Mean annual air temperature: 52 to 57 degrees F

Frost-free period: 170 to 210 days

Farmland classification: Prime farmland if drained

### Map Unit Composition

Evansville and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

### **Description of Evansville**

### Setting

Landform: Lake plains

Landform position (two-dimensional): Summit Landform position (three-dimensional): Talf

Down-slope shape: Concave Across-slope shape: Linear Parent material: Loamy alluvium

### Typical profile

Ap - 0 to 9 inches: silt loam
Bg - 9 to 40 inches: silty clay loam

Cg - 40 to 66 inches: stratified silt loam to silty clay loam

### Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Poorly drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum in profile: 20 percent Available water storage in profile: High (about 11.5 inches)

### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: B/D

### He-Henshaw silt loam

### **Map Unit Setting**

National map unit symbol: 5gbp Elevation: 340 to 700 feet

Mean annual precipitation: 40 to 46 inches Mean annual air temperature: 52 to 57 degrees F

Frost-free period: 170 to 210 days

Farmland classification: Prime farmland if drained

### **Map Unit Composition**

Henshaw and similar soils: 97 percent

Minor components: 3 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

### **Description of Henshaw**

### Setting

Landform: Stream terraces

Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loamy lacustrine deposits

### Typical profile

Ap - 0 to 7 inches: silt loam

Bt1 - 7 to 28 inches: silty clay loam Bt2 - 28 to 43 inches: silty clay loam

C - 43 to 60 inches: silt loam

### Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 6 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 20 percent Available water storage in profile: High (about 11.1 inches)

### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

### **Minor Components**

### **Evansville**

Percent of map unit: 3 percent Landform: Depressions

### References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2\_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf