Drainage Study for: Ashley Place Phase II Vanderburgh Co. Indiana January 19, 2000 revised February 20, 2000 Ralph A. Easley, Jr., P.E. Indiana Registration 12892 Prepared by: Andy Easley Engineering, Inc. 1133 West Mill Road Evansville, IN 47710 Ph: 812-424-2481 email - easley@evansville.net # DRAINAGE CALCULATIONS FOR ASHLEY PLACE PHASE II OUTER EICHOFF ROAD VANDERBURGH COUNTY, INDIANA ## SITE LOCATION: 4 The proposed site is located north of the existing Ashley Place (Phase I) and east of Eichoff Road. ## **GENERAL NOTES:** This property has several unique features which include being bound by a railroad track to the north, an abandoned oil well on site, an oil pipe line which is located along the west line, an old unmarked cemetery and existing grades that approach 18%. Extensive earthwork will be required to provide buildable lots as required by the proposed primary play. ### **EXISTING CONDITIONS:** Previous Use: Agricultural and wooded. Approximately 2/3 of the proposed site is wooded with the remaining third available for agriculture. Gross Area = 20.3 Acres ### **EXISTING DRAINAGE PATTERN:** By inspection of County Planametric maps, this area is part of an 82.39 acre watershed. 38.83 acres of this watershed is located north of the adjacent railroad tracks and enters onto the site via a 3' x 3' box. The remainding 43.56 enters the property by overland flow into a ditch that exits the property through an homemade 8' diameter culvert. #### **Existing Watershed Geometry:** Area: 82.39 Acres (gross) Undeveloped Runoff Coefficient, $C_U = 0.24$ for a fallow field with brush with a slope between 2 and 5% as per Vanderburgh County Drainage Ordinance, It should be noted that a runoff coefficient of 0.40 is utilized to examine storm water runoff for the 25 year and 100 year events. L = 4569 feet H = 528 - 441 = 87 feet t_c = 50 minutes as per attached nomograph (25 minutes x 2 for overland flow) From the Rainfall Intensity as per Vanderburgh County Drainage Ordinance i = 2.288"/hour for a 10 year storm. ## **Proposed Watershed Geometry:** Total area = 883,718.6 sf = 20.3 Acres New Structures = 62 lots x 2000 sf/ea = 124,000.00 sf Private driveways = 62 lots x 12' x 35.5' = 26,412.00 sf Patios and walks = 62 lots x 100sf/ea = 6,200 sf Roadways = 3964.76 lf x 29' = 114,978.21 sf Sidewalks = 23,378 sf Developed runoff coefficient = Yard Area = 588,750.4 $\{(124,000 * 0.98) + (26,412 * 0.95) + (6,200 * 0.95) + (114,978.21 * 0.95) + (23,378 * 0.95) + (588,750 * 0.25)\} / 883,718.6 = 0.49$ Project: ASHLEY PLACE -PHASE II Designer: Easley Engineering Detention Facility Design Return Period: 25 yrs. Release Rate Return Period: 10 yrs. Watershed Area: 82.39 acres Time of Concentration: 25 minutes Rainfall Intensity: (i_u) = 2.288"/hr Undeveloped Runoff Coefficient (C_U) = 0.24 Undeveloped Runoff Rate $(O=(C_U)(i_u)(A_U) = 0.24 * 2.288 * 82.39 = 45.24 CFS$ Developed Runoff Coefficient (CD)= 0.49 Area to be Developed $(A_1) = 20.3$ | Storm
Duration | Rainfall Intensity | Inflow
Rate | Outflow
Rate | Storage
Rate | Required
Storage | |-------------------------|----------------------------|---|---|-------------------------------|---| | t _d
(hrs) | i _d
(in./hr) | C _d i _d A _D
(cfs) | C _u i _u A _u
(cfs) | l(t _d)-O
(cfs) | [I((t _d)-0 t _d]/12
(acre-ft) | | 0.170 | 5.925 | 58.93 | 45.24 | 13.69 | 0.19 | | 0.33 | 4.571 | 45.46 | 45.24 | 0.22 | 0.01 | | 0.50 | 3.646 | 36.26 | 45.24 | - | - | | 0.67 | 3.123 | 31.06 | 45.24 | - | | | 0.83 | 2.601 | 25.86 | 45.24 | | - | | 1.0 | 2.078 | 20.67 | 69.10 | - | - | | 1.5 | 1.739 | 17.30 | 69.10 | - | - | | 2.0 | 1.40 | 13.93 | 69.10 | - | | Peak storage requirement = 0.19 acre-feet = 8,451.78 cf cubic feet of storage. Detention will be provided in the relocated ditch at the northwesterly corner of the propoerty. This detention facility will provide 9019 cubic feet of storage with a top water elevation of 447.50. The 10 year undeveloped storm shall be released by a RCP culvert based on the following computer generated analisis Allowable release = 45.24 cfs Q= CLH3/2 Q = 45.24 H = 447.50 - 444.00 = 3.50 feet C = Coefficient = 3.32 as per the Handbook of Hydraulics by King and Braxter L = 2.10 feet The elevation of the 25 year event (emergency overflow elevation) was determined to be 474.84 based on the attached HEC II analysis for the 25 year event with a clear outflow structure. Q = CiA i₂₅ = 2.60 as per the Vanderburgh County Drainage Ordinance C = 0.40 A = 82.39 Acres Q = 0.40 * 2.60 * 82.39 = 86.00 CFS Release of this flow shall be over a concrete capped berm at the release structure. Details are provided on the plans. Release for the 100 year event is provided over the same concrete capped berm. A 100 year overflow weir will be provided to discharge the 100 year event based upon the following: Assuming that the watershed located above the proposed site is developed to such an extent that the runoff coefficient increases from 0.24 to 0.40 Q = CiA A = 82.39 Acres $i_{100} = 3.311$ "/hr c = 0.40 $Q_{100} = 0.40 * 3.311 * 82.39 = 109.12 cfs$ C:\Projects\WPDQCS\6512.drg.wpd 7.2 TIME OF CONCENTRATION OF SMALL DRAINAGE BASINS FOR EXAMPLE : SEE 3) PAGE 41 STORM SEWER DESIGN SHEET - RATIONAL METHOD PLACE PHASE! PROJECT: ASHLEY PLACE PHASE II | | | Pipe Cover
Doversitiesem | 2 | 27 | 127 | 1 26 | | |--|-----------------------------------|--|-------|------|--------|----------------------|---| | | | 8 8 M | 8 | 1 | 98 | 1 27 | | | | | Inert
Bevelon
Dovretreen | , | 1 | 443.56 | 843.48 | | | <u>р</u> | 0.013 | Insert
Bevellon
Upstreen | 8 | 23 | 443.87 | AK3 PR | | | _ | ä | Rim
Bevalion
Downstream | 9 | 1 | | 448 1R | | | DATE: JAN, 18,2000 SHEET: | MANNINGS N: | Him
Bevelon
Upstreem | 48 | 100 | 3 | 448 43 | | | 2000 | | THE STATE | 1 | 1 | 5 | 6.12 0.13 | | | NY. 18 | 25YR | Velocity
(PVSec.) | g | | | L | | | A IE | | Consulty (CFS) | 15 | 0 00 | 0.00 | 10.81 | | | _ | STOR | 100 | 7 | 18 | 8 | 18 1.06 | | | | DESIGN STORM: | Langth Cq. (Acrem) CqA 2CQA (Arrin) (Arrin) (Arrin) (CP) (CPS) Demonster 1 | 13 14 | ı | 2 | 18 | | | 200 | | σ <u>(f)</u> | 2 | 200 | | 7.1 | | | | ERING | - (linke) | 11 12 | A 80 | 2 | 19 4.69 | 1 | | 2 | GWE | JÉ | 9 | 40 | 0.1 | 18 | | | Ž | EYE | -£ | æ | 18.7 | | 9.0 | į | | 2 | EASI | ş | 80 | 7.00 | , | 0.87 0.54 1.514 15.9 | | | į | AND | \$ | - | 900 | | 0.0 | | | MOLECUL AND PROPERTY PROPER | ENGINEER: ANDY EASLEY ENGINEERING | ₹ | 8 | 25 | 1 | | | | 2 | ENG | σ | 40 | 0 30 | | 0.65 | | | | | 1 | 4 | 29 | 1 | 100 46.02 0.62 | | | | | Downsteam | 8 | 101 | 100 | 35 | | | | | Upatrase | 2 | 102 | 404 | 151 | | | | | Line | - | 2 | 1 | • | | | GS N:
Rim
Bevation
Downtream
19
458.2
458.2 | | | | | | 1 | | ST | ORM | SEW | R DE | SIGN | SHEE | T-RA | TIONA | LMET | H00 | | STORM SEWER DESIGN SHEET - RATIONAL METHOD | | | | | |--|-------|-------|----------------------|------|------|--------|--------|--------|------|--|------------|------------|--------|------------|-------|------------------|---------|--|--|-------------------------------|------------------------------|--------------------------|--------------------------| | University Deventors Large Col. Co | | | | | ğ | ;
E | ASTE | ₹
₽ | 핑 | NSE II | K | . S DI | | ð | ITE . | AN 18,2 | 000 | SHEET | Ĭ | ዜ | | | | | Updatestern Daventheam Lange Charma Ch | | | | | ENGI | VEER: | ANDY I | EASLE | YENG | NEEF | SNS
SNS | 5 | ESIGNS | TORM | | SYR | _ | MANNINK | ži
88 | 0.013 | | | | | 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 19 19 2 2 5.28 6.73 0.07 456.28 458.38 20 7.73 0.04 1.55 0.16 4.59 16 16 4.91 7.87 18 18 2.22 5.28 6.73 0.07 456.28 20 0.14 0.58 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 | 4 4 A | | Joventeum
Mentole | \$E | σ | €. | 5 | § | o E | \$\vartheta\$\vartheta\text{\$\vartheta\tex | -4 | - 5
- 2 | F E | \$ \$ \$ £ | 100 | Alcohy
avSeo) | Part (F | E Se de la constant d | Rim
Bevelon
Dovretreem | Insert
Bevalon
Upstraum | Invert
Bevelon
wrateam | Pipe
Cover
Updream | Pipe Cover
Downstream | | 202 20 0.5 1907 0.56 0.944 (6.4 16 4.91 4.88 1.2 2.2 5.28 6.73 0.07 486.28 4.88.32 2.07 7.38 0.04 1.85 0.81 5.96 18 4.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7 | - | 2 | 6 | 4 | ro. | 6 | 1 | | 6 | e | = | 1 | 13 | - | | ā | 1: | ā | 9 | 8 | , | 8 | 8 | | 201 72 8 0.49 1.25 0.81 1.506 16 16 4.9 7.67 15 2.12 9.41 7.65 0.16 499.20 4.89.34 2.12 0.14 0.59 0.73 0.43 1.597 19.7 20 4.59 9.16 18 2.12 15.3 866 0.75 4.89.34 4.89 | | 3 20 | | 20 | 0.5 | 1 807 | 88.0 | 1700 | 18.4 | THE . | 100 | 100 | 1 | 100 | | 8 | XXX | 25, 927 | 28.838 | 2 | 100 | 1 | 3 | | 200 144 059 0.73 0.43 1.997 18.7 20 4.59 8.16 18 2.12 15.3 8.65 0.77 4.69 3.4 | | 2 20. | | 73.8 | 0.43 | 12 | DR1 | 7,000 | 4 | 8 | 404 | | 4 P | 107 | 200 | 200 | 500 | 480.00 | 00.00 | | 1 | 0/1 | 4.3 | | 453 865 027 45834 187 20 4.39 8.18 18 2.12 153 8.65 0.27 458.34 453 | | - C | l | 1 | 0 | 1 | | | 2 | 2 | | 3 | 2 | 7 | 16.0 | B | 2 | 400.40 | 400.04 | | Ź | | | | | | 3 | | 144 | B | Ü./3 | 2 | /88 | 19.7 | R | 8 | 18 | 9 | 2.12 | 15.3 | 8.65 | 0.27 | 458.34 | 453 | 453.05 | 450 | 354 | ľ | Ъ DATE: JAN 18,2000 SHEET: STORM SEWER DESIGN SHEET - RATIONAL METHOD PROJECT: ASHLEY PLACE PHASE II - SERIES 300 ENGINEER: ANDY EASLEY ENGINEERING | t | | | | ENGINEER: AND EXPLET ENGINEERING | | | 2 | NEEK | 2 | 2 | DESIGN STORM: | OKM | ZSYR. | | MANNINGS N. | ž
S | 0.013 | | | | |--------|-----------|-------|------|--|------|-------|----|------------|-----------|-----|---------------|--|---------|------|---------------------------|------------------------------|-----------------------------|---------------------------------|-------|--------------------------| | Nertos | Downsteam | 100 | σ | m Langth G (Acres) QA 25AA (min) (min) (min) (CFS) C | \$ | - £ | -Î | - <u>4</u> | 90 | £ £ | | Figs Rips
Staps Capacity
(%) (CFS) | (PSSec) | P C | Ham
Bevelon
Upsteen | Rim
Bevelon
Downstream | Imert
Beselon
Upsteem | Invert
Bevellon
Downsteem | # 8 H | Pipe Cover
Downstream | | | 6 | 4 | S | 0 | - | 8 | 6 | 0 | - | 13 | 1 | 4 | 18 | F | 188 | 100 | 20 | 2 | 2 | g | | 303 | 305 | 84.02 | 0.5 | 217 | 60 | 1 085 | 15 | 15 50 | 33 54 | - | 4 | 17 | E.E. B. | 8 | O CAN C | П | | 450.05 | 1 | 3 | | 305 | 304 | 30.22 | 0.7 | 0.38 | 0.27 | 1.351 | 15 | 15 | 87 | | 1 | 75 | 3 | 2 8 | 77 482 44 | Т | 1 | | | | | 301 | 300 | 14 | 0.59 | 0.32 | 0.19 | 200 | 15 | 15 | 5.09 7.75 | | 18 | 18 175 130 | 0 | 7.88 | 37 CBN C | 2 2 | 3 5 | 40.00 | 8 6 | 2 . | p DATE: JAN 18,2000 SHEET: STORM SEWER DESIGN SHEET - RATIONAL METHOD PROJECT: ASHLEYN PLACE - PHASE II SERIES 400 DATE: JAN 18,2000 \$ | 9 | | | | |--------|------------------------|-----------------------|------------|------|------|------|------------|--------|----|---------|------|-------|------|---------------|------------------|-----------|----------------------------|-----------------------------|-------------------|--------------------------------|---------------------------|--------------------------| | Number | Lipstonern
Marritch | Downstream
Menhole | ∮ € | σ | (Ac) | \$ | ស្ន | (Page) | JĒ | - (ayu) | 0 E | G (a) | 2 6 | 9 (S) (S) (S) | (mgad)
Apopty | Mar (afr) | Rim
Bevelon
Upstreem | Rim
Bevalon
Downsteam | Invert
Benefor | Innert
Bevelon
Downsteam | Pipe
Cover
Upstream | Pipe Cover
Downstream | | - | 7 | 9 | 4 | 60 | 8 | 1 | 8 | 0 | 9 | = | 12 | 5 | 12 | t, | å | þ | â | ç | 8 | 2 | 8 | 8 | | œ | | | 72.5 | 0.00 | 0.84 | 76.0 | 4550 | 1 | 4 | - | 4 | † | 1 | 1 | | | | 1 | - 1 | 1 | ۱, | 3 | | 1 | | | 00 | 8 | 0 | 5 | 1,00,0 | n | 10 | 5000 | / / | | 4 | 2.36 | 304 | | | | | | | | | 0 | 904 | 404 | 115.3 | | 0.24 | 0.13 | 0.13 0.471 | 12 | 15 | 5.03 | 2.37 | | 0.5 | 2.52 | 3.21 | 9.0 | | | 1 | Ľ | | ľ | | * | 404 | 405 | 414.6 | 0 | 0 | 0 | 0.471 | | 15 | 0 | 2.37 | 12 | 233 | 5.44 | 8,92 | | 479 | 468.84 | 478.08 | PEUP | 8 | 88 | | | | | | | | 0 | 0 | | | | - | | - | Ī | | | | | | L | | | | 7 | 407 | | 34.3 | | ш | 0.74 | 0.74 | 18.4 | | - | 3.63 | | 0.78 | 583 | A AD | | | 1 | 1 | l | 1 | | | 60 | 403 | 402 | 60.7 | 0.74 | 0.31 | 0.23 | 0.07 | 12 | 18 | 4.81 | 4.76 | a. | 60 | 12.50 | 40.28 | , | 468.45 | A88.64 | ARA OF | 40.00 | 2 0 | 1 0 | | | | | | | | | İ | | | - | | | 1 | | | | | 1 | 4 | | | | b 401 48.7 0.57 0.64 0.88 2.46 15.5 16 5.07 163 12 1 3.66 3.73 0.15 466.5 401 48.7 0.57 0.64 0.02 2.46 15.5 16 4.91 10.3 1 10.37 0.67 0.64 0.02 2.46 15.5 16 4.91 10.31 18 2.42 16.34 8.500.7 0.39 46.64 40.01 48.7 0.57 0.67 0.64 0.88 5.04 15.5 16 4.91 12.1 18 2.42 16.34 8.500.7 0.39 46.64 15.04 8.500.8 0.50 4.650.8 15.04 8.500.8 0.50 4.650.8 15.04 8.500.8 0.50 4.650.8 15.04 8.500.8 0.50 4.650.8 15.04 8.500.8 DATE: JAN 18,2000 SHEET: PROJECT: ASHLEY PLACE PHASE II -500 SERIES **2 2 3** MANNINGS N. DESIGN STORM: ENGINEER: EASLEY ENGINEERING, INC. Pipe Cover Downstreem 19 20 21 22 442.75 438.56 436.43 1.75 439.5 438.43 437.59 2.82 Envelor Contrasm Rim Bevalon Downstream 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 36 0.65 0.06 0.06 0.06 0.06 0.06 0.06 0.0725 15 19 4.68 3.39 15 4.4 13.56 11.04 0.03 442.75 15 0.08 0.08 0.0725 15 19 4.68 3.39 15 4.4 13.56 11.04 0.03 442.75 STORM SEWER DESIGN SHEET - RATIONAL METHOD 16 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.00 P Q (S) 8 8 8 8 8 8 8 8 e E 08 - (a) JÊ Ş \$ **₹** σ 50 500 Dovreteem Marhole 8 8 Upetraem Nathe PROJECT: ASHLEY PLACE - PHASE II 800 SERIES | | | | | | | | | | | | ! | | į | | | | | 5 | | | | |----|---|---------|------|-------------------------------------|------|--------|------|-------|------|------|--|---------------------------------------|------------------------------|---------------|-----|--|----------------------------|------------------------------|---------------------------------|-------------|--------------------------| | | | | ENG | ENGINEER: AEASLEY ENGINEERING, INC. | AEAS | LEY EN | GRNE | ERING | NC. | | DESIGN STORM: | STOR | | 25YR | | MANNINGS N. | ž
SS | 0.043 | | | | | 32 | Upstream Doverstern Large Co. (Access) CA 2.0A (41) Large 1 D DEN | F. | σ | (Acres) | \$ | § | #Ê | JĒ. | -£ | 0 gg | Pipe Pipe Pipe
Diemeter Sope Capacity
(in) (%) (CFS) | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | # (5 (5)
(5 (8)
(7 (8) | PASe
(PASe | FFE | th These Ran
Three Bession
(min) Upstream Di | Rim
Bevalen
Ametreun | Inert
Sevelon
Upstreem | irvert
Bevalon
Downstream | Cover Cover | Pipe Cover
Downstream | | 2 | 9 | 4 | 10 | 6 | 1 | | • | þ | ŧ | 2 | 13 | 1 | 5 | 18 17 | 1 | œ. | 9 | 8 | 24 | 33 | 8 | | | 601 60 | 00 17.8 | 90.0 | 0.11 | 0.1 | 0 108 | 15 | 15 | 1033 | 0.53 | 12 | 128 | 12 73 | 16.21 | 100 | ER CAA | 430 R4 | 410 63 | | 174 | 3 | | SUB-BASIN 101 | AREA 37918.55 | | | | | |--|---------------|----|------|----------|-----| | HOMES | 4500.00 | c= | 0.95 | n= | 0. | | CONC. BRIVES & PATIO LAWN OR GREEN SPACE | 2556.00 | | 0.95 | m= | 0.0 | | RDADS | 16529.86 | | | n=
n= | 0.4 | | SIDEVALKS | 12140.40 | c= | 0.95 | | 0.0 | | | 2192.29 | | 0.95 | l | 0.0 | | t= 0.827×((N×L)/(S) /2) H= 12.00 | 15.87 | | | | | \$ 200 | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | |--|---------------------|---|------------|-----| | HOMES | 10000.00 | € ≈ 0 | | | | CONC. DRIVES & PATIO
LAWN OR GREEN SPACE | 2630.00 | © = 0.
© = 0. | | | | ROADS | 81270.04 | C# 0. | | 0. | | SIBE VAL KS | 13024.70
2160.19 | C = 0. | .95
.95 | 0.0 | | t= 0.827*((N*L)/(S)1/2)
H= 27.00
L= 575.00
S= 0.0470
i25 4.69
0=CiA= 4.59505372 | 7 [18.71 | | | | | SUB-BASIN 201 | AREA 32205.61 | | | | |--|--------------------------------------|------|----------------|------| | HOMES | 5250.00 | ¢# 0 | .95 n# | O | | CONC. DRIVES & PATIO
LAWN OR GREEN SPACE | 2982.00 | €= 0 | | 0. | | ROADS STACE | 15471.55 | £# 0 | .20 n # | ារ . | | SIDEVAL KS | 6662.06 | C# 0 | .95
•n= | 0.0 | | | 1840.00 | | .95 | 0.0 | | 0.59 | | | | | | ln 2n | | | | | | N= 0.20 | | | | | | 0.4 | 167 | | | | | t- 0.827*((N*L)/(5)1/ | 19.77 | | | | | ⊭ | | | | | | \$# 520.00
\$# 0.0135 | | | | | | ³⁼ 0.0135 | | | | | | | | | | | | 4 59 | ************************************ | | | | | i25= <mark>4.59</mark>
0=CiA=
2.00118805 | | | | | | 0.0133 | | | | | ** | SUB-BASIN 202 | AREA 54862.95 | | | | | |---|---------------|-------------|------|----------|---| | HOMES | 10000.00 | 200000000 | 0.95 |]n= | | | CONC. DRIVES & PATIO
LAWN OR GREEN SPACE | 2630.00 | #C000000000 | 0.95 | n=
n= | | | RDADS — | 33706.39 | | 0.20 | | l | | SIDEWALKS | 6756.35 | c= | 0.95 | n= | Ľ | | | 1770.21 | | 0.95 | | 0 | | C= 0.49 | | | | | | | | | | | | | | N= 0.25 | | | | | | | | | | | | | | te= 0.827*((N*L)/(S)1/2) | 7 16.45 | | | | | | | 10,43 | | | | | | ⊭ = 10.71 | | | | | | | L# 397.00
\$# 0.0270 | | | | | | | 3 ⁻ 0.0270 | | | | | | | | | | | | | | 125=14.90 | | | | | | | i25=4.90 | | | | | | | 0=C A=
3.01919304 | | | | | | f | SUB-BASIN 203 | AREA 83104.93 | | | |--|---------------|---------------|-----------------| | HOMES | 14000.00 | €# 0.95 | | | CONC. DRIVES & PATID LAWN OR GREEN SPACE | 3682.00 | ¢≑ 0.95 | n= | | RDADS | 49890.34 | C# 0.20 | n=
n= | | SIDEWALKS | 12438.05 | c= U.95 | _ _m= [0 | | | 3094.54 | 0.95 |] [0 | | C≈ 0.50 | | | | | :L | | | | | [a.c. | | | | | N= 0.25 | | | | | | | | | | t= 0.827×((N×L)/(S)1/2) | 16.37 | 10.50 (0.000) | | | | 16.37 | | | | H= 20.00 | | | | | L= 485.00 | | | | | S= 0.0412 | | | | | | | | | | i25=4.91 | | | | | | | | | | | | | | | Q=CiA= 4.68140011 | | | | # 50.1 . | SUB-BASIN 301 | AREA 13799.53 | | | | | |---|-------------------------|----|------|----------|-----| | HOMES | 2250.00 | c= | 0.95 |]n= | 0. | | CONC. DRIVES & PATIO
LAWN OR GREEN SPACE | 1278.00 | | 0.95 | n≈ | _ | | RDADS " | 6624.30 | | 0.20 | n=
n= | 0.4 | | SIDEVAL KS | 2858.49 | =2 | 0.95 | m= | 0.0 | | £= 0.59 | 788.74 | | 0.95 | J | 0.0 | | N= 0.20
t= 0.827*[(N*L)/(S)1/2 | 67
13.4 - 15 minimum | | | | | | ZAB-RAZIM 305 | AREA 16677.72 | | | |--|--------------------|--------------------|----------| | HOMES | 2000.00 | ∉# 0.95 |]n≈ | | CONC. DRIVES & PATIO LAWN OR GREEN SPACE | 852.00 | ©# 0.95
©# 0.20 | n≈
n= | | RDADS — | 5554.51
7267.89 | C#
0.95 | ก= | | SIDEWAL KS | 1003.32 | 0.95 | m= | | C= 0.70 | | | L | | | | | | | N≠ 0.15 | 7 | | | | | | | | | t= 0.827*((N*L)/(S)1/2) | 11.4 15 | 1 | | | | 11.4 - 15 minimum | | | | H= 15.80 | | | | | S= 380.00
S= 0.0416 | | | | | 0.0416 | | | | | i25 5.03 | | | | | | | | | | Q=C A=
1.34937186 | | | | 303 51836.11 13000.00 0.95 0.02 0.95 0.02 4560.00 0.20 21680.51 0.40 0.95 10093.83 0.02 0.95 2501.77 0.02 0.64 0.18 11.55 - 15 minimum 19.00 361.00 0.0526 5.03 3.80874951 . | SUB-BASIN 401 | AREA 28039.33 | | | |--|--------------------|--------------------|----------------------| | HOMES | 4500.00 | | n=[| | CONC. DRIVES & PATIO LAWN OR GREEN SPACE | 2556.00 | ©# 0.95
©# 0.20 | n= [| | ROADS | 14061.59 | C# 0.05 | n# 0 | | SIDEVALKS | 5415.17
1506.57 | 0.95 |) n ≕ 0.0 | | N= 0.21
t= 0.827×L(N×L)/(S)1/2)
H= 15.00
L= 460.00
S= 0.0326
125 4.98 | 7 [15.54 | | | e 4 | SUB-BASIN 402 | AREA 1887.16 | ~ · · · · · · · · · · · · · · · · · · · | | |--|--------------|---|---------| | HOMES | 0.00 | €≈ 0.95 |] n= [0 | | CONC. BRIVES & PATI
LAWN OR GREEN SPACE | | ¢≈ 0.95 | n= 0 | | ROADS UNLEN SPAC | 607.68 | 0.20 | n= 0. | | ZIDEWAL KS | 1099,09 | c= 0.95 | n= 0.0 | | | 180.39 | 0.95 | 0.0 | | N= 0.14
t= 0.827*[(N*L)/(3
H= 2.00
L= 35.00
S= 0.0571
25-5.03
0=CA= 0.15449349 | | num | | | | AREA 13575.18 | | | |--|-------------------------|--------------------|-------------| | HOMES | 2250.00 | ¢ ≈ 0.9 | 12400000470 | | CONC. DRIVES & PATIO LAWN OR GREEN SPACE | 1278.00 | Ç= 0.9 | | | RDADS — | 3861.68 | Ç [®] 0.2 | 20 m 0. | | SIDEWALKS | 4965.93 | € 0.9 | | | | 1219.57 | 0.9 | 0.0 | | | | | | | N= 0.13 | | | | | | | | | | t= 0.827×((N×L)/(5)1/2) | 7
10.14 - 15 minimus | m . | | | H= 15.00 | | | | | L= 344.00 | | | | | S= 0.0436 | | | | | 10.0.00 | | | | | | | | | | i25 5.03 | | | | | | | | | • (40) | SUB-BASIN 405 | AREA 10825.19 | | | |--|------------------|--------------------------|---| | HOMES | 0.00 | ¢# 0.95 m# 0.02 |] | | CONC. BRIVES & PATIO
LAWN OR GREEN SPACE — | 0.00 | ¢= 0.95 ** = 0.02 | Ĵ | | RDADS - | 5630.42 | 0.20 %# 0.40 | 7 | | SIDE VAL KS | 4250.76 | 0.95 | | | | 944.02 | 0.95 | | | ^{0.56} | | | • | | A CONTRACTOR OF THE | | | | | . 10.22 | | | | | 1 ≈ 0.55 | | | | | Commence Com | py | | | | t= 0.827*[(N*L)/(S)]/2 | 10.47 - 15 minir | num | | | | | | | | 5.00 | | | | | = 175.89
= 0.0384 | | | | | 0.0284 | | | | | ²⁵ 5.03 | | | | | | | * | | | =CiA=
0.70 | | | | | | | | | • | SUB-BASIN 406 | AREA 22288.32 | | | | | |--|-------------------|------------|--------------|-------------|-----| | HOMES | 4000.00 | C# | 0.95 | | | | CHNC, DRIVES & PATIO LAVN OR GREEN SPACE | 852.00 | | 0.95 | m= | 0.1 | | RDADS | 8637.99 | ~ | 0.20 | 10.00 miles | 0.4 | | SIDEVALKS | 7264.47 | c= | 0.95
0.95 | er# | 0.0 | | N= 0.17
t= 0.827*[(N*L)/(S)1/2)
H= 11.00
L= 347.00
0.0317
25 5.03
0=C/A 1.70 | 12.43 - 15 minimu | i m | | | | e m ... • | SUB-BASIN 407 | ^^^ | REA 68838.07 | | | |---|-------------------|--------------|-----------------|------------| | HOMES | | 10000.00 | c ≠ 0.95 | n= 0.02 | | CONC. DRIVES & PATIO
LAVN OR GREEN SPACE | | 2630.00 | ¢ ≈ 0.95 | | | ROADS | | 44211.44 | Ç≈ 0.20 | n=
0.40 | | SIDEWAL KS | | 9646.92 | C# 0.95 | 20.0 🚌 | | C= 0.47 | | 2349.71 | 0.95 | 0.02 | | ¥= 0.26
E= 0.827×L(N×L)/(S)1. |) 467 [16. | 38 | | | | = 16.00
= 439.00
= 0.0364 | | | | | | ²⁵ 4.91 | | | | | | =CIA= [0.68 | | | | | * (= _(b) 408 42844.11 7000.00 0.02 0.95 0.95 0.02 700.00 0.20 35144.11 0.40 0.95 0.00 0.02 0.95 0.00 0.02 0.33 0.33 17.9 14.00 407.35 0.03436 4.76 1.57 | SUB-BASIN 502 | AREA 44813.93 | | 800000000000000000000000000000000000000 | | | |--|---------------|------------|---|----------|----| | HOMES | 8000.00 | 0.00000000 | 0.95 |]n= | - | | CONC. DRIVES & PATIO LAWN OR GREEN SPACE | 2104.00 | 2000000000 | 0.95 | n= | 0 | | RDADS | 19292.90 | C= | 0.20 | n≈
n= | 0 | | SIDEVAL KS | 13011.03 | c= | 0.95 | | 0 | | | 2406.00 | | 0.95 | J | 0. | | t= 0.827*(0N*L)/(S)1/2)
H= 13.20
L= 638.60
S= 0.0207
i25=4.68
Q=CiA= 3.01939058 | 18.75 | | | | | [20] ## SEWER PIPES Enter up to 10 pipes. Enter <Return> only for flowrate and diameter to end. | FLOWRATE
(CFS) | DIAMETER
(IN) | FRICTION (FT ¹ /6) | SLOPE | VELOCITY (FPS) | |-------------------|------------------|-------------------------------|-------|----------------| | 45.24 | 29.30 | 0.0130 | 1.38 | 9.66 | | 48.18 | 30.00 | 0.0130 | | 9.82 |